{"title":"Recycling of iron oxide waste by carbothermic reduction to utilize in FDM 3D printing materials","authors":"Korbkaroon Doungkeaw, Peeraphat Suttipong, Phachai Kungwankrai, Suksan Muengto, Boonlom Thavornyutikarn, Jennarong Tungtrongpairoj","doi":"10.55713/jmmm.v33i2.1584","DOIUrl":null,"url":null,"abstract":"Iron oxide scale generally forms on low-carbon steel surfaces during the hot rolling processes andproduces as solid waste more than 100 thousand tons per year. The utilization of the iron oxide scaleis one possible way to reduce the production cost for steel plants and promote environmental protection. Acrylonitrile-Butadiene-Styrol-Copolymer (ABS) is widely used as engineering plastic for automotive parts because of its high strength and wear resistance. The recycling of iron oxide waste as reinforcement particles for enhancing the tensile strength of ABS composite was studied. The iron oxides were recycled by carbon powder at a high temperature between 1150℃ to 1350℃ up to 120 min. After the reduction process, the reduced iron from an optimal condition with the iron-rich fraction was ground to powder. Afterward, the 0.3 vol% to 1.3 vol% powders were mixed with ABS polymer powder and formed as composite filaments for additive manufacturing (FDM 3D printing). The tensile strength of pure ABS filament increased to 37.16 ± 2.37 MPa when added recycled iron powders. The regular distribution and 13.68 ± 9.78 µm of recycled-iron particle sizes on the ABS matrix were investigated and correlated to the mechanical properties.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i2.1584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron oxide scale generally forms on low-carbon steel surfaces during the hot rolling processes andproduces as solid waste more than 100 thousand tons per year. The utilization of the iron oxide scaleis one possible way to reduce the production cost for steel plants and promote environmental protection. Acrylonitrile-Butadiene-Styrol-Copolymer (ABS) is widely used as engineering plastic for automotive parts because of its high strength and wear resistance. The recycling of iron oxide waste as reinforcement particles for enhancing the tensile strength of ABS composite was studied. The iron oxides were recycled by carbon powder at a high temperature between 1150℃ to 1350℃ up to 120 min. After the reduction process, the reduced iron from an optimal condition with the iron-rich fraction was ground to powder. Afterward, the 0.3 vol% to 1.3 vol% powders were mixed with ABS polymer powder and formed as composite filaments for additive manufacturing (FDM 3D printing). The tensile strength of pure ABS filament increased to 37.16 ± 2.37 MPa when added recycled iron powders. The regular distribution and 13.68 ± 9.78 µm of recycled-iron particle sizes on the ABS matrix were investigated and correlated to the mechanical properties.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.