A. Sadeghfam, Alireza Sadeghi-Ahangar, A. Elgamal, H. Heuermann
{"title":"Design and Development of a Novel Self-Igniting Microwave Plasma Jet for Industrial Applications","authors":"A. Sadeghfam, Alireza Sadeghi-Ahangar, A. Elgamal, H. Heuermann","doi":"10.1109/mwsym.2019.8700788","DOIUrl":null,"url":null,"abstract":"This paper presents the design, development and experimental results of a novel, self-igniting compact and straightforward microwave plasma jet for industrial applications. Based on field simulations and supported by plasma RF equivalent circuits derived from measurements of the plasma during operation, a multi-staged matching network is developed to achieve the well matched microwave plasma jet presented. The 2.45 GHz microwave plasma torch with a waveguide input port operates is an atmospheric plasma with 2 kW and is well suited for various industrial applications by using air only. The energy conversion from the waveguide port to the plasma torch is approximately 90%. This not only enhances present plasma applications in e.g. surface treatment by offering higher power capabilities, activation rates and production speed, but also enables new applications such as cutting, rapid heating, and welding.","PeriodicalId":6720,"journal":{"name":"2019 IEEE MTT-S International Microwave Symposium (IMS)","volume":"57 1","pages":"63-66"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mwsym.2019.8700788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the design, development and experimental results of a novel, self-igniting compact and straightforward microwave plasma jet for industrial applications. Based on field simulations and supported by plasma RF equivalent circuits derived from measurements of the plasma during operation, a multi-staged matching network is developed to achieve the well matched microwave plasma jet presented. The 2.45 GHz microwave plasma torch with a waveguide input port operates is an atmospheric plasma with 2 kW and is well suited for various industrial applications by using air only. The energy conversion from the waveguide port to the plasma torch is approximately 90%. This not only enhances present plasma applications in e.g. surface treatment by offering higher power capabilities, activation rates and production speed, but also enables new applications such as cutting, rapid heating, and welding.