Hardening mechanisms of steels with bainite and martensite structures

K. Aksenova, E. N. Nikitina, Y. Ivanov, D. Kosinov
{"title":"Hardening mechanisms of steels with bainite and martensite structures","authors":"K. Aksenova, E. N. Nikitina, Y. Ivanov, D. Kosinov","doi":"10.17073/0368-0797-2018-10-787-793","DOIUrl":null,"url":null,"abstract":"Martensite and bainite are the most complex structures being formed in steel in heat treatment including the quantitative interpretation. On frequent occasions, the application field of these steels includes the operation at high static and dynamic compression stresses. The thorough and comprehensive analysis of the materials’ structure after different types of treatment enables to use them competently for the manufacturing of the parts and structures providing them with the necessary complex of physical and mechanical properties. The factor determining the mechanical properties of the materials are the structure of solid solution, presence of nano-dimentional particles of the second phases, dislocation substructure, types and location of various boundaries and internal stress fields. For successful control of the formation of structural phase states and mechanical properties of the material it is necessary to know the quantitative laws and the cold hardening mechanisms of steels of different structural classes at active plastic deformation. By methods of transmission electron diffraction microscopy the analysis of cold hardening of 38CrNi3MoV steel with martensite and 30Cr2Ni-2MoV steel with bainite structures at active plastic compression deformation to 26 % and 36 %, respectively, was done in the research. The contributions caused by intraphase boundaries, dislocation substructure, carbide phases, atoms of alloying elements and long-range stress fields are considered. It is established that the substructural hardening (caused by the internal long-range stress fields) and solid solution strengthening (caused by carbon atoms) give largest contribution to cold hardening of 38CrNi3MoV hardened steel. For normalization of 30Cr2Ni2MoV steel hardening also takes place at the expense of the internal stress field’s action, at the penetration of carbon atoms to the ferrite crystal lattice as well as at the structural fragmentation with the deformation degree higher than 26 %. The dislocation substructure and the particles of carbide phase make comparatively small contribution to the hardening of these steels. It is shown that the cause of bainite steel softening at large (more than 15 %) degrees of deformation is connected with the activation of deformation microtwinning process.","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2018-10-787-793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Martensite and bainite are the most complex structures being formed in steel in heat treatment including the quantitative interpretation. On frequent occasions, the application field of these steels includes the operation at high static and dynamic compression stresses. The thorough and comprehensive analysis of the materials’ structure after different types of treatment enables to use them competently for the manufacturing of the parts and structures providing them with the necessary complex of physical and mechanical properties. The factor determining the mechanical properties of the materials are the structure of solid solution, presence of nano-dimentional particles of the second phases, dislocation substructure, types and location of various boundaries and internal stress fields. For successful control of the formation of structural phase states and mechanical properties of the material it is necessary to know the quantitative laws and the cold hardening mechanisms of steels of different structural classes at active plastic deformation. By methods of transmission electron diffraction microscopy the analysis of cold hardening of 38CrNi3MoV steel with martensite and 30Cr2Ni-2MoV steel with bainite structures at active plastic compression deformation to 26 % and 36 %, respectively, was done in the research. The contributions caused by intraphase boundaries, dislocation substructure, carbide phases, atoms of alloying elements and long-range stress fields are considered. It is established that the substructural hardening (caused by the internal long-range stress fields) and solid solution strengthening (caused by carbon atoms) give largest contribution to cold hardening of 38CrNi3MoV hardened steel. For normalization of 30Cr2Ni2MoV steel hardening also takes place at the expense of the internal stress field’s action, at the penetration of carbon atoms to the ferrite crystal lattice as well as at the structural fragmentation with the deformation degree higher than 26 %. The dislocation substructure and the particles of carbide phase make comparatively small contribution to the hardening of these steels. It is shown that the cause of bainite steel softening at large (more than 15 %) degrees of deformation is connected with the activation of deformation microtwinning process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝氏体和马氏体组织钢的硬化机理
马氏体和贝氏体是钢在热处理过程中形成的最复杂的组织,包括定量解释。通常情况下,这些钢的应用领域包括在高静态和动态压缩应力下的操作。对材料经过不同类型处理后的结构进行彻底和全面的分析,使它们能够胜任地用于制造零件和结构,为它们提供必要的物理和机械性能复合体。决定材料力学性能的因素是固溶体的结构、第二相纳米颗粒的存在、位错的亚结构、各种边界和内应场的类型和位置。为了成功地控制材料的组织相态和力学性能的形成,有必要了解不同结构等级钢在主动塑性变形时的定量规律和冷硬化机理。采用透射电子衍射分析方法,对马氏体组织的38CrNi3MoV钢和贝氏体组织的30Cr2Ni-2MoV钢在主动塑性压缩变形时的冷硬化进行了研究,分别达到26%和36%。考虑了相内边界、位错亚结构、碳化物相、合金元素原子和远程应力场的影响。结果表明,38CrNi3MoV淬硬钢的冷硬化主要是由亚结构硬化(由内部长程应力场引起)和固溶强化(由碳原子引起)引起的。对于30Cr2Ni2MoV钢的正火,硬化也发生在内部应力场的作用下,发生在碳原子渗透到铁素体晶格时,发生在变形程度大于26%的结构断裂时。位错亚结构和碳化物相颗粒对这些钢的硬化作用相对较小。结果表明,贝氏体钢大变形软化(大于15%)的原因与变形微孪晶过程的激活有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
81
期刊最新文献
Effect of accelerated cooling after cross-helical rolling on formation of structure and low-temperature fracture toughness of low-carbon steel Physical properties and structure of boron-containing slags during reduction period of AOD process Selective solid-phase reduction of iron in phosphorous oolite ores Institutionalization of ESG-principles at the international level and in the Russian Federation, their impact on ferrous metallurgy enterprises. Part 2 Carbides of transition metals: Properties, application and production. Review. Part 2. Chromium and zirconium carbides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1