Optimising fracture in automotive tail cap by firefly algorithm

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Swarm Intelligence Research Pub Date : 2020-03-20 DOI:10.1504/ijsi.2020.106396
G. Kakandikar, Omkar Kulkarni, Sujata L. Patekar, Trupti Bhoskar
{"title":"Optimising fracture in automotive tail cap by firefly algorithm","authors":"G. Kakandikar, Omkar Kulkarni, Sujata L. Patekar, Trupti Bhoskar","doi":"10.1504/ijsi.2020.106396","DOIUrl":null,"url":null,"abstract":"Deep drawing is a manufacturing process in which sheet metal is progressively formed into a three-dimensional shape through the mechanical action of a punch forming the metal inside die. The flow of metal is complex mechanism. Pots, pans for cooking, containers, sinks, automobile body parts such as panels and gas tanks are among a few of the items manufactured by deep drawing. Uniform strain distribution in forming results in quality components. The predominant failure modes in sheet metal parts are springback, wrinkling and fracture. Fracture or necking occurs in a drawn part, which is under excessive tensile loading. The prediction and prevention of fracture depends on the design of tooling and selection of process parameters. Firefly algorithm is one of the nature inspired optimisation algorithms and is inspired by firefly's behaviour in nature. The proposed research work presents novel approach to optimise fracture in automotive component-tail cap. The optimisation problem has been defined to optimise fracture within the constraints of radius on die, radius on punch and blank holding force. Fire fly algorithm has been applied to find optimum process parameters. Numerical experimentation has been conducted to validate the results.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"104 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijsi.2020.106396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Deep drawing is a manufacturing process in which sheet metal is progressively formed into a three-dimensional shape through the mechanical action of a punch forming the metal inside die. The flow of metal is complex mechanism. Pots, pans for cooking, containers, sinks, automobile body parts such as panels and gas tanks are among a few of the items manufactured by deep drawing. Uniform strain distribution in forming results in quality components. The predominant failure modes in sheet metal parts are springback, wrinkling and fracture. Fracture or necking occurs in a drawn part, which is under excessive tensile loading. The prediction and prevention of fracture depends on the design of tooling and selection of process parameters. Firefly algorithm is one of the nature inspired optimisation algorithms and is inspired by firefly's behaviour in nature. The proposed research work presents novel approach to optimise fracture in automotive component-tail cap. The optimisation problem has been defined to optimise fracture within the constraints of radius on die, radius on punch and blank holding force. Fire fly algorithm has been applied to find optimum process parameters. Numerical experimentation has been conducted to validate the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用萤火虫算法优化汽车尾盖断裂
拉深是一种制造过程,其中钣金板是逐步形成一个三维形状,通过机械作用的冲压成形金属内部模具。金属的流动是一种复杂的机制。用于烹饪的锅、锅、容器、水槽、汽车车身部件(如面板和油箱)都是通过深拉深制造的少数产品。在成形过程中,均匀的应变分布可以得到高质量的零件。板料零件的主要失效形式是回弹、起皱和断裂。在拉伸载荷过大的情况下,拉伸件发生断裂或颈缩。断裂的预测和预防取决于刀具的设计和工艺参数的选择。萤火虫算法是一种受自然界萤火虫行为启发的优化算法。提出了一种优化汽车零部件尾盖断裂的新方法。优化问题被定义为在模具半径、冲床半径和压边力约束下对断裂进行优化。采用萤火虫算法求解最优工艺参数。并进行了数值实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
期刊最新文献
A Passenger Flow Prediction Method Using SAE-GCN-BiLSTM for Urban Rail Transit A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution CT Image Detection of Pulmonary Tuberculosis Based on the Improved Strategy YOLOv5 A Review on Convergence Analysis of Particle Swarm Optimization Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1