M. Milić, Todor Vacev, P. Petronijević, Ivan Nešović, Andrija Zorić, Stepa Paunović, Biljana Matejević Nikolić
{"title":"Experimental Research and FE Model of a Bolted Steel-CLT Composite Connection","authors":"M. Milić, Todor Vacev, P. Petronijević, Ivan Nešović, Andrija Zorić, Stepa Paunović, Biljana Matejević Nikolić","doi":"10.3311/ppci.22752","DOIUrl":null,"url":null,"abstract":"Steel-timber composite structures have numerous advantages compared to steel only and timber only structures. One of the most important parts of a composite structure is the composite connection. Object of this research was a steel-CLT composite connection consisting of a steel profile, a cross-laminated timber (CLT) panel and a bolt with nut and washer. Aim of the research was to develop an efficient finite element (FE) model of a bolted steel-CLT composite connection and to validate it experimentally. The research process consisted of several steps: experimental testing of the considered connection using asymmetrical push-out test, numerical modelling and analysis of the connection using Finite Element Method (FEM), validation of the numerical model using experimental results, and parametric study of the proposed numerical model. For numerical analysis, an innovative method for timber modelling has been proposed. The comparison between the experimental and numerical research results demonstrated that the proposed numerical model was convenient for practical application in structure analyses. The parametric study showed that, in some cases, atypical failure modes of the connection occurred. Based on registered behavior, a recommendation is given to calculate the load capacity of the connection integrally, taking into account both the primary (Johansen’s) and the secondary (rope effect) part of the connection strength, instead partially, as proposed by EN standards.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22752","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Steel-timber composite structures have numerous advantages compared to steel only and timber only structures. One of the most important parts of a composite structure is the composite connection. Object of this research was a steel-CLT composite connection consisting of a steel profile, a cross-laminated timber (CLT) panel and a bolt with nut and washer. Aim of the research was to develop an efficient finite element (FE) model of a bolted steel-CLT composite connection and to validate it experimentally. The research process consisted of several steps: experimental testing of the considered connection using asymmetrical push-out test, numerical modelling and analysis of the connection using Finite Element Method (FEM), validation of the numerical model using experimental results, and parametric study of the proposed numerical model. For numerical analysis, an innovative method for timber modelling has been proposed. The comparison between the experimental and numerical research results demonstrated that the proposed numerical model was convenient for practical application in structure analyses. The parametric study showed that, in some cases, atypical failure modes of the connection occurred. Based on registered behavior, a recommendation is given to calculate the load capacity of the connection integrally, taking into account both the primary (Johansen’s) and the secondary (rope effect) part of the connection strength, instead partially, as proposed by EN standards.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.