EDAM: An Efficient Clique Discovery Algorithm with Frequency Transformation for Finding Motifs

Yifei Ma, Guoren Wang, Yongguang Li, Yuhai Zhao
{"title":"EDAM: An Efficient Clique Discovery Algorithm with Frequency Transformation for Finding Motifs","authors":"Yifei Ma, Guoren Wang, Yongguang Li, Yuhai Zhao","doi":"10.1142/9781860947292_0015","DOIUrl":null,"url":null,"abstract":"Finding motifs in DNA sequences plays an important role in deciphering transcriptional regulatory mechanisms and drug target identification. In this paper, we propose an efficient algorithm, EDAM, for finding motifs based on frequency transformation and Minimum Bounding Rectangle (MBR) techniques. It works in three phases, frequency transformation, MBR-clique searching and motif discovery. In frequency transformation, EDAM divides the sample sequences into a set of substrings by sliding windows, then transforms them to frequency vectors which are stored in MBRs. In MBR-clique searching, based on the frequency distance theorems EDAM searches for MBR-cliques used for motif discovery. In motif discovery, EDAM discovers larger cliques by extending smaller cliques with their neighbors. To accelerate the clique discovery, we propose a range query facility to avoid unnecessary computations for clique extension. The experimental results illustrate that EDAM well solves the running time bottleneck of the motif discovery problem in large DNA database.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"33 1","pages":"119-128"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding motifs in DNA sequences plays an important role in deciphering transcriptional regulatory mechanisms and drug target identification. In this paper, we propose an efficient algorithm, EDAM, for finding motifs based on frequency transformation and Minimum Bounding Rectangle (MBR) techniques. It works in three phases, frequency transformation, MBR-clique searching and motif discovery. In frequency transformation, EDAM divides the sample sequences into a set of substrings by sliding windows, then transforms them to frequency vectors which are stored in MBRs. In MBR-clique searching, based on the frequency distance theorems EDAM searches for MBR-cliques used for motif discovery. In motif discovery, EDAM discovers larger cliques by extending smaller cliques with their neighbors. To accelerate the clique discovery, we propose a range query facility to avoid unnecessary computations for clique extension. The experimental results illustrate that EDAM well solves the running time bottleneck of the motif discovery problem in large DNA database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频率变换的高效团块发现算法
在DNA序列中寻找基序在破译转录调控机制和药物靶标鉴定中具有重要作用。在本文中,我们提出了一种基于频率变换和最小边界矩形(MBR)技术的高效寻基算法EDAM。它分为三个阶段:频率变换、mbr -团搜索和基序发现。在频率变换方面,EDAM通过滑动窗口将采样序列分割成一组子串,然后将其变换成频率矢量存储在mbr中。在MBR-clique搜索中,EDAM基于频率距离定理搜索用于基序发现的MBR-clique。在基序发现中,EDAM通过与其邻居扩展较小的团块来发现较大的团块。为了加速团的发现,我们提出了一个范围查询工具,以避免团扩展的不必要计算。实验结果表明,EDAM很好地解决了大型DNA数据库中motif发现问题的运行时间瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1