Kat M. Lazar, Shamitha Shetty, Ashutosh Chilkoti, Joel H. Collier
{"title":"Immune-active polymeric materials for the treatment of inflammatory diseases","authors":"Kat M. Lazar, Shamitha Shetty, Ashutosh Chilkoti, Joel H. Collier","doi":"10.1016/j.cocis.2023.101726","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, a growing understanding of the underlying mechanisms of autoinflammatory and autoimmune disease has enabled significant advances in biomaterial therapeutics for their treatment and prevention. Drug-free or immune-active polymeric materials are of particular interest due to their chemical tunability, multifaceted mechanisms of action, and potential to offer alternatives to conventional treatments. While in many cases the relationships between polymer physicochemical properties and the immune processes they influence are context-dependent and require further clarity, several concepts are emerging that can be applied in the design of anti-inflammatory materials. This review highlights recent work that investigates these relationships, as well as work that applies them to immunomodulatory biomaterials for the treatment or prevention of autoimmune and autoinflammatory diseases.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000511","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, a growing understanding of the underlying mechanisms of autoinflammatory and autoimmune disease has enabled significant advances in biomaterial therapeutics for their treatment and prevention. Drug-free or immune-active polymeric materials are of particular interest due to their chemical tunability, multifaceted mechanisms of action, and potential to offer alternatives to conventional treatments. While in many cases the relationships between polymer physicochemical properties and the immune processes they influence are context-dependent and require further clarity, several concepts are emerging that can be applied in the design of anti-inflammatory materials. This review highlights recent work that investigates these relationships, as well as work that applies them to immunomodulatory biomaterials for the treatment or prevention of autoimmune and autoinflammatory diseases.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.