POSTERIOR DE POLYA NO MONITORAMENTO AMOSTRAL DE PESCARIAS

Paul Gerhard Kinas, Jonata Cristian Wieczynski
{"title":"POSTERIOR DE POLYA NO MONITORAMENTO AMOSTRAL DE PESCARIAS","authors":"Paul Gerhard Kinas, Jonata Cristian Wieczynski","doi":"10.28951/rbb.v38i2.441","DOIUrl":null,"url":null,"abstract":"A non-informative bayesian approach to sample-based fishery surveys is proposed. The Polya posterior for finite population parameters is used to obtain the inferences. The viability of a sampling plan was used in a pilot field experiment to collect weekly information about effort and catch from the artisanal fishery in Rio Grande, RS. Based on a simulated virtual population with four species and 345 fishermen, the sampling plan was tested using a sampling fraction of 3.3% from a complete data matrix of 2760 components. Results have shown accuracies above 71% for all but the most problematic species 2, and around 90% for estimates of total catch and cummulative effort. The percentile probability intervals (ICr) perform slightly better than the highest density interval (HDI) in terms of coverage; although both resulted about 5 percentage points bellow the nominal value of 95%.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/rbb.v38i2.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

A non-informative bayesian approach to sample-based fishery surveys is proposed. The Polya posterior for finite population parameters is used to obtain the inferences. The viability of a sampling plan was used in a pilot field experiment to collect weekly information about effort and catch from the artisanal fishery in Rio Grande, RS. Based on a simulated virtual population with four species and 345 fishermen, the sampling plan was tested using a sampling fraction of 3.3% from a complete data matrix of 2760 components. Results have shown accuracies above 71% for all but the most problematic species 2, and around 90% for estimates of total catch and cummulative effort. The percentile probability intervals (ICr) perform slightly better than the highest density interval (HDI) in terms of coverage; although both resulted about 5 percentage points bellow the nominal value of 95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出了一种基于样本的渔业调查的非信息贝叶斯方法。使用有限总体参数的Polya后验来获得推论。抽样计划的可行性在一个试点现场实验中被用于收集RS里奥格兰德州手工渔业的每周努力量和捕获量信息。基于一个有4个物种和345名渔民的模拟虚拟种群,抽样计划从2760个组成部分的完整数据矩阵中使用3.3%的抽样分数进行测试。结果显示,除问题最严重的物种外,所有物种的准确率都在71%以上,对总捕获量和累计努力量的估计准确率在90%左右。在覆盖率方面,百分位概率区间(ICr)略优于最高密度区间(HDI);尽管两者的结果都比名义值95%低了约5个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1