Thermoluminescence characteristics and dosimetric aspects of Li2O-Cao-B2O3 glasses doped with rare earth ions

J. Anjaiah, G. Rani, J. Shankar, P. Raju
{"title":"Thermoluminescence characteristics and dosimetric aspects of Li2O-Cao-B2O3 glasses doped with rare earth ions","authors":"J. Anjaiah, G. Rani, J. Shankar, P. Raju","doi":"10.1063/1.5130253","DOIUrl":null,"url":null,"abstract":"Thermoluminescence (TL) characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+) Li2O-Cao-B2O3 glasses have been studied in the temperature range 303-573K; the pure glass has exhibited single TL peak at 424K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped calcium borate glass has a potential to be considered as the thermoluminescence dosimeter.Thermoluminescence (TL) characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+) Li2O-Cao-B2O3 glasses have been studied in the temperature range 303-573K; the pure glass has exhibited single TL peak at 424K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped calcium borate glass has a potential to be considered as the thermoluminescence dosimeter.","PeriodicalId":20725,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoluminescence (TL) characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+) Li2O-Cao-B2O3 glasses have been studied in the temperature range 303-573K; the pure glass has exhibited single TL peak at 424K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped calcium borate glass has a potential to be considered as the thermoluminescence dosimeter.Thermoluminescence (TL) characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+) Li2O-Cao-B2O3 glasses have been studied in the temperature range 303-573K; the pure glass has exhibited single TL peak at 424K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped calcium borate glass has a potential to be considered as the thermoluminescence dosimeter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀土离子掺杂li20 - cao - b2o3玻璃的热释光特性及剂量学研究
研究了掺杂4种稀土离子(Pr3+、Nd3+、Sm3+和Eu3+)的纯li20 - cao - b2o3玻璃在303 ~ 573k范围内的热释光特性;纯玻璃在424K时呈现出单TL峰。当掺杂不同的稀土离子时,玻璃没有出现额外的发光峰,但随着TL光输出强度的增加,现有发光峰的发光峰温度逐渐向更高的温度移动。发现Eu3+掺杂玻璃的发光曲线下面积最大。与观测到的TL峰相关的陷阱深度参数已使用Chen公式进行了评估。这些玻璃在辐射剂量测定中的可能用途已被描述。结果表明,掺铕硼酸钙玻璃具有作为热释光剂量计的潜力。研究了掺杂4种稀土离子(Pr3+、Nd3+、Sm3+和Eu3+)的纯li20 - cao - b2o3玻璃在303 ~ 573k范围内的热释光特性;纯玻璃在424K时呈现出单TL峰。当掺杂不同的稀土离子时,玻璃没有出现额外的发光峰,但随着TL光输出强度的增加,现有发光峰的发光峰温度逐渐向更高的温度移动。发现Eu3+掺杂玻璃的发光曲线下面积最大。与观测到的TL峰相关的陷阱深度参数已使用Chen公式进行了评估。这些玻璃在辐射剂量测定中的可能用途已被描述。结果表明,掺铕硼酸钙玻璃具有作为热释光剂量计的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dye degradation studies on Cu-doped TiO2 thin films developed by reactive sputtering A scrutiny of antibacterial activity of pure and iodine doped ZnO thin films synthesized by mSILAR method Characterization and magnetic phase resolution of CoFe2O4 nanocubes and nanospheres A polyvinyl alcohol/chitosan blend proton exchange membrane for direct methanol fuel cell Improvement of critical parameters of YBCO superconductor by addition of graphene oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1