{"title":"Asymptotics for the systematic and idiosyncratic volatility with large dimensional high-frequency data","authors":"Xinbing Kong, Jinguan Lin, Guangying Liu","doi":"10.1142/S2010326320500070","DOIUrl":null,"url":null,"abstract":"In this paper, we decompose the volatility of a diffusion process into systematic and idiosyncratic components, which are not identified with observations discretely sampled from univariate process. Using large dimensional high-frequency data and assuming a factor structure, we obtain consistent estimates of the Laplace transforms of the systematic and idiosyncratic volatility processes. Based on the discrepancy between realized bivariate Laplace transform of the pair of systematic and idiosyncratic volatility processes and the product of the two marginal Laplace transforms, we propose a Kolmogorov–Smirnov-type independence test statistics for the two components of the volatility process. A functional central limit theorem for the discrepancy is established under the null hypothesis that the systematic and idiosyncratic volatilities are independent. The limiting Gaussian process is realized by a simulated discrete skeleton process which can be applied to define an approximate critical region for an independence test.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"105 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500070","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we decompose the volatility of a diffusion process into systematic and idiosyncratic components, which are not identified with observations discretely sampled from univariate process. Using large dimensional high-frequency data and assuming a factor structure, we obtain consistent estimates of the Laplace transforms of the systematic and idiosyncratic volatility processes. Based on the discrepancy between realized bivariate Laplace transform of the pair of systematic and idiosyncratic volatility processes and the product of the two marginal Laplace transforms, we propose a Kolmogorov–Smirnov-type independence test statistics for the two components of the volatility process. A functional central limit theorem for the discrepancy is established under the null hypothesis that the systematic and idiosyncratic volatilities are independent. The limiting Gaussian process is realized by a simulated discrete skeleton process which can be applied to define an approximate critical region for an independence test.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.