Modifying the Optical Phonon Response of Nanocrystals inside Terahertz Plasmonic Nanocavities

Xin Jin, A. Cerea, G. Messina, A. Rovere, R. Piccoli, F. De Donato, Francisco Palazón, A. Perucchi, P. Di Pietro, R. Morandotti, S. Lupi, F. De Angelis, M. Prato, A. Toma, L. Razzari
{"title":"Modifying the Optical Phonon Response of Nanocrystals inside Terahertz Plasmonic Nanocavities","authors":"Xin Jin, A. Cerea, G. Messina, A. Rovere, R. Piccoli, F. De Donato, Francisco Palazón, A. Perucchi, P. Di Pietro, R. Morandotti, S. Lupi, F. De Angelis, M. Prato, A. Toma, L. Razzari","doi":"10.1109/cleoe-eqec.2019.8872209","DOIUrl":null,"url":null,"abstract":"Phonons are quantized lattice vibrations that represent a major energy dissipation channel in solid-state systems [1], both at the macro- and at the nano-scale. Although the phonon response of a specific nanomaterial is usually considered as its intrinsic fingerprint, here we show how it can be altered by exploiting the unique properties of terahertz (THz) plasmonic nanocavities [2]. Specifically, we obtained such nanocavities from the end-to-end coupling (30-nm gap size) of few-μm-long plasmonic gold nanoantennas. We fabricated a series of plasmonic arrays featuring different nanoantenna lengths, spanning from 4.75 μm to 6.75 μm, thus tuning their resonances between approximately 7 and 9 THz. We tested our approach on cadmium sulphide (CdS) nanocrystals (NCs), spin-coated over the array surfaces (Fig. 1a), since these NCs feature a dipole-active (Fröhlich) phonon mode at 7.85 THz. We performed THz transmission measurements using a Fourier-transform THz microscope coupled to synchrotron light (ELETTRA, Trieste), showing the splitting of the nanoantenna resonance into two new vibro-polariton bands, as shown in Fig. 1b. This anti-crossing behaviour represents a distinctive signature of the strong coupling between the plasmon and phonon modes, the splitting (Rabi) at the crossing point being directly related to the coupling strength. More intriguingly, we also observed the phonon resonance modification without any THz illumination, just exploiting the vacuum electric field of the nanocavities [3] (estimated to be as high as 4.6× 105 V/m). To this end, we performed a series of micro-Raman measurements on individual nanocavity areas, finding evidence of the two new hybrid states (P− and P+ in Fig. 1c) even in THz \"dark\" conditions. The evidence of phonon mode splitting both in THz and Raman characterizations confirms the possibility of altering the intrinsic phonon response of a nanomaterial using properly tailored plasmonic resonators, which could open new avenues for the manipulation of energy dissipation in nanodevices. Novel cavity geometries that promise to further boost the strong vibrational coupling in these systems will be presented on site.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"78 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cleoe-eqec.2019.8872209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Phonons are quantized lattice vibrations that represent a major energy dissipation channel in solid-state systems [1], both at the macro- and at the nano-scale. Although the phonon response of a specific nanomaterial is usually considered as its intrinsic fingerprint, here we show how it can be altered by exploiting the unique properties of terahertz (THz) plasmonic nanocavities [2]. Specifically, we obtained such nanocavities from the end-to-end coupling (30-nm gap size) of few-μm-long plasmonic gold nanoantennas. We fabricated a series of plasmonic arrays featuring different nanoantenna lengths, spanning from 4.75 μm to 6.75 μm, thus tuning their resonances between approximately 7 and 9 THz. We tested our approach on cadmium sulphide (CdS) nanocrystals (NCs), spin-coated over the array surfaces (Fig. 1a), since these NCs feature a dipole-active (Fröhlich) phonon mode at 7.85 THz. We performed THz transmission measurements using a Fourier-transform THz microscope coupled to synchrotron light (ELETTRA, Trieste), showing the splitting of the nanoantenna resonance into two new vibro-polariton bands, as shown in Fig. 1b. This anti-crossing behaviour represents a distinctive signature of the strong coupling between the plasmon and phonon modes, the splitting (Rabi) at the crossing point being directly related to the coupling strength. More intriguingly, we also observed the phonon resonance modification without any THz illumination, just exploiting the vacuum electric field of the nanocavities [3] (estimated to be as high as 4.6× 105 V/m). To this end, we performed a series of micro-Raman measurements on individual nanocavity areas, finding evidence of the two new hybrid states (P− and P+ in Fig. 1c) even in THz "dark" conditions. The evidence of phonon mode splitting both in THz and Raman characterizations confirms the possibility of altering the intrinsic phonon response of a nanomaterial using properly tailored plasmonic resonators, which could open new avenues for the manipulation of energy dissipation in nanodevices. Novel cavity geometries that promise to further boost the strong vibrational coupling in these systems will be presented on site.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修改太赫兹等离子体纳米腔内纳米晶体的光学声子响应
声子是一种量子化的晶格振动,在宏观和纳米尺度上都是固态系统中主要的能量耗散通道[1]。虽然特定纳米材料的声子响应通常被认为是其固有的指纹,但在这里,我们展示了如何通过利用太赫兹(THz)等离子体纳米腔的独特特性来改变它[2]。具体来说,我们通过几μm长的等离子体金纳米天线的端到端耦合(间隙尺寸为30 nm)获得了这种纳米空腔。我们制作了一系列具有不同纳米天线长度(从4.75 μm到6.75 μm)的等离子体阵列,从而在大约7到9太赫兹之间调谐它们的共振。我们在硫化镉(CdS)纳米晶体(nc)上测试了我们的方法,这些纳米晶体在阵列表面上进行了自旋涂层(图1a),因为这些nc具有7.85太赫兹的偶极子活性(Fröhlich)声子模式。我们使用傅立叶变换太赫兹显微镜耦合同步加速器(ELETTRA, Trieste)进行太赫兹透射测量,显示纳米天线共振分裂成两个新的振动极化子带,如图1b所示。这种反交叉行为代表了等离子体和声子模式之间强耦合的独特特征,交叉点的分裂(Rabi)与耦合强度直接相关。更有趣的是,我们还观察到在没有任何太赫兹照明的情况下,仅利用纳米腔的真空电场(估计高达4.6× 105 V/m)进行声子共振修饰[3]。为此,我们对单个纳米腔区域进行了一系列微拉曼测量,发现即使在太赫兹“黑暗”条件下也存在两种新的杂化态(图1c中的P−和P+)的证据。在太赫兹和拉曼表征中声子模式分裂的证据证实了使用适当定制的等离子体谐振器改变纳米材料的固有声子响应的可能性,这可能为操纵纳米器件中的能量耗散开辟新的途径。新的空腔几何形状有望进一步增强这些系统中的强振动耦合,将在现场展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tapered Multi-Section Superluminescent Diode with Tunable Spectral Asymmetry between Narrow and Wide Facet Outputs A Spectrally Resolved Single-Shot Wavefront Sensor for Broadband High-Harmonic Generation Sources Laser Engineered Surface Structures for Custom Design of Secondary Electron Yield Spectral Correlations in Radiation of Random Distributed Feedback Raman Fiber Laser Optically Driven Attosecond Electron Dynamics in III-V Semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1