Harmonic Mixture Weibull-G Family of Distributions: Properties, Regression and Applications to Medical Data

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2022-11-28 DOI:10.1155/2022/2836545
Ernest Zamanah, Suleman Nasiru, Albert Luguterah
{"title":"Harmonic Mixture Weibull-G Family of Distributions: Properties, Regression and Applications to Medical Data","authors":"Ernest Zamanah,&nbsp;Suleman Nasiru,&nbsp;Albert Luguterah","doi":"10.1155/2022/2836545","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In recent years, the developments of new families of probability distributions have received greater attention as a result of desirable properties they exhibit in the modelling of data sets. The Harmonic Mixture Weibull-G family of distributions was developed in this study. The statistical properties were comprehensively presented and five special distributions developed from the family. The hazard functions of the special distributions were shown to exhibit various forms of monotone and nonmonotone shapes. The applications of the developed family to real data sets in medical studies revealed that the special distribution (Harmonic mixture Weibul Weibull distribution) provided a better fit to the data sets than other competitive models. A location-scale regression model was developed from the family and its application demonstrated using survival time data of hypertensive patients.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/2836545","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/2836545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the developments of new families of probability distributions have received greater attention as a result of desirable properties they exhibit in the modelling of data sets. The Harmonic Mixture Weibull-G family of distributions was developed in this study. The statistical properties were comprehensively presented and five special distributions developed from the family. The hazard functions of the special distributions were shown to exhibit various forms of monotone and nonmonotone shapes. The applications of the developed family to real data sets in medical studies revealed that the special distribution (Harmonic mixture Weibul Weibull distribution) provided a better fit to the data sets than other competitive models. A location-scale regression model was developed from the family and its application demonstrated using survival time data of hypertensive patients.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调和混合Weibull-G族分布:性质、回归及其在医疗数据中的应用
近年来,新的概率分布族的发展受到了越来越多的关注,因为它们在数据集建模中表现出了令人满意的性质。本文建立了调和混合Weibull-G分布族。全面介绍了统计性质,并从家族中发展出五个特殊分布。特殊分布的危险函数表现出各种形式的单调和非单调形状。在医学研究中对实际数据集的应用表明,特殊分布(调和混合威布尔威布尔分布)比其他竞争模型更适合数据集。以高血压患者的生存时间数据为基础,建立了一种基于家庭的位置尺度回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
On the Efficiency of the Newly Developed Composite Randomized Response Technique Approximate Solution of an Integrodifferential Equation Generalized by Harry Dym Equation Using the Picard Successive Method A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1