A Compressive Sensing Approach for Single-Snapshot Adaptive Beamforming

Huiping Huang, A. Zoubir, H. So
{"title":"A Compressive Sensing Approach for Single-Snapshot Adaptive Beamforming","authors":"Huiping Huang, A. Zoubir, H. So","doi":"10.1109/SAM48682.2020.9104359","DOIUrl":null,"url":null,"abstract":"This paper introduces a compressive sensing approach for single-snapshot adaptive beamforming. The observation data model is considered as source components in additive white noise, and then a compressive sensing formulation is introduced to estimate the parameters of the interference signals. That is, a LASSO regression problem is proposed and solved, yielding the directions as well as the powers of the interference signals. On the other hand, the noise power is estimated by means of averaging the squares of the difference between the observation data and the estimate of the source components. Finally, the interference-plus-noise covariance matrix is reconstructed and used for adaptive beamformer design. Simulation results show better performance of the proposed beamformer than several existing beamformers, in the case of a single snapshot.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"111 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a compressive sensing approach for single-snapshot adaptive beamforming. The observation data model is considered as source components in additive white noise, and then a compressive sensing formulation is introduced to estimate the parameters of the interference signals. That is, a LASSO regression problem is proposed and solved, yielding the directions as well as the powers of the interference signals. On the other hand, the noise power is estimated by means of averaging the squares of the difference between the observation data and the estimate of the source components. Finally, the interference-plus-noise covariance matrix is reconstructed and used for adaptive beamformer design. Simulation results show better performance of the proposed beamformer than several existing beamformers, in the case of a single snapshot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单快照自适应波束形成的压缩感知方法
介绍了一种单快照自适应波束形成的压缩感知方法。将观测数据模型作为加性白噪声中的源分量,然后引入压缩感知公式来估计干扰信号的参数。即提出并求解了LASSO回归问题,得到了干扰信号的方向和幂。另一方面,通过对观测数据与源分量估计值之差的平方求平均值来估计噪声功率。最后,重构干涉加噪声协方差矩阵,用于自适应波束形成器的设计。仿真结果表明,在单快照情况下,该波束形成器的性能优于现有的几种波束形成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1