Prediction of Key Parameters in the Design of CO2 Miscible Injection via the Application of Machine Learning Algorithms

M. Hamadi, Tayeb El Mehadji, A. Laalam, N. Zeraibi, O. Tomomewo, H. Ouadi, Abdesselem Dehdouh
{"title":"Prediction of Key Parameters in the Design of CO2 Miscible Injection via the Application of Machine Learning Algorithms","authors":"M. Hamadi, Tayeb El Mehadji, A. Laalam, N. Zeraibi, O. Tomomewo, H. Ouadi, Abdesselem Dehdouh","doi":"10.3390/eng4030108","DOIUrl":null,"url":null,"abstract":"The accurate determination of key parameters, including the CO2-hydrocarbon solubility ratio (Rs), interfacial tension (IFT), and minimum miscibility pressure (MMP), is vital for the success of CO2-enhanced oil recovery (CO2-EOR) projects. This study presents a robust machine learning framework that leverages deep neural networks (MLP-Adam), support vector regression (SVR-RBF) and extreme gradient boosting (XGBoost) algorithms to obtained accurate predictions of these critical parameters. The models are developed and validated using a comprehensive database compiled from previously published studies. Additionally, an in-depth analysis of various factors influencing the Rs, IFT, and MMP is conducted to enhance our understanding of their impacts. Compared to existing correlations and alternative machine learning models, our proposed framework not only exhibits lower calculation errors but also provides enhanced insights into the relationships among the influencing factors. The performance evaluation of the models using statistical indicators revealed impressive coefficients of determination of unseen data (0.9807 for dead oil solubility, 0.9835 for live oil solubility, 0.9931 for CO2-n-Alkane interfacial tension, and 0.9648 for minimum miscibility pressure). One notable advantage of our models is their ability to predict values while accommodating a wide range of inputs swiftly and accurately beyond the limitations of common correlations. The dataset employed in our study encompasses diverse data, spanning from heptane (C7) to eicosane (C20) in the IFT dataset, and MMP values ranging from 870 psi to 5500 psi, covering the entire application range of CO2-EOR. This innovative and robust approach presents a powerful tool for predicting crucial parameters in CO2-EOR projects, delivering superior accuracy, speed, and data diversity compared to those of the existing methods.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4030108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The accurate determination of key parameters, including the CO2-hydrocarbon solubility ratio (Rs), interfacial tension (IFT), and minimum miscibility pressure (MMP), is vital for the success of CO2-enhanced oil recovery (CO2-EOR) projects. This study presents a robust machine learning framework that leverages deep neural networks (MLP-Adam), support vector regression (SVR-RBF) and extreme gradient boosting (XGBoost) algorithms to obtained accurate predictions of these critical parameters. The models are developed and validated using a comprehensive database compiled from previously published studies. Additionally, an in-depth analysis of various factors influencing the Rs, IFT, and MMP is conducted to enhance our understanding of their impacts. Compared to existing correlations and alternative machine learning models, our proposed framework not only exhibits lower calculation errors but also provides enhanced insights into the relationships among the influencing factors. The performance evaluation of the models using statistical indicators revealed impressive coefficients of determination of unseen data (0.9807 for dead oil solubility, 0.9835 for live oil solubility, 0.9931 for CO2-n-Alkane interfacial tension, and 0.9648 for minimum miscibility pressure). One notable advantage of our models is their ability to predict values while accommodating a wide range of inputs swiftly and accurately beyond the limitations of common correlations. The dataset employed in our study encompasses diverse data, spanning from heptane (C7) to eicosane (C20) in the IFT dataset, and MMP values ranging from 870 psi to 5500 psi, covering the entire application range of CO2-EOR. This innovative and robust approach presents a powerful tool for predicting crucial parameters in CO2-EOR projects, delivering superior accuracy, speed, and data diversity compared to those of the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用机器学习算法预测CO2混相喷射设计中的关键参数
准确确定关键参数,包括co2 -烃溶解度比(Rs)、界面张力(IFT)和最小混相压力(MMP),对于co2提高采收率(CO2-EOR)项目的成功至关重要。本研究提出了一个强大的机器学习框架,该框架利用深度神经网络(MLP-Adam)、支持向量回归(SVR-RBF)和极端梯度增强(XGBoost)算法来获得这些关键参数的准确预测。这些模型是利用从以前发表的研究中编译的综合数据库开发和验证的。此外,深入分析了影响Rs、IFT和MMP的各种因素,以增强我们对其影响的理解。与现有的相关性和替代机器学习模型相比,我们提出的框架不仅具有更低的计算误差,而且还提供了对影响因素之间关系的增强见解。利用统计指标对模型进行性能评价,结果表明,该模型对未见数据的决定系数为0.9807(死油溶解度)、0.9835(活油溶解度)、0.9931 (co2 -正构烷烃界面张力)和0.9648(最小混相压力)。我们的模型的一个显著优势是它们能够预测值,同时快速、准确地适应广泛的输入,超越了常见相关性的限制。我们研究中使用的数据集包含了不同的数据,从IFT数据集中的庚烷(C7)到二十烷(C20), MMP值从870 psi到5500 psi,涵盖了CO2-EOR的整个应用范围。与现有方法相比,这种创新而强大的方法为预测二氧化碳提高采收率项目的关键参数提供了强大的工具,具有更高的准确性、速度和数据多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of the Synthesis Variables in the Preparation of CoAl2O4 Pigment Using Microwaves to Reduce Energetic Consumption Remarks on Constitutive Modeling of Granular Materials Analysis and Design Methodology of Radial Flux Surface-Mounted Permanent Magnet Synchronous Motors The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution Review of Graphene-Based Materials for Tribological Engineering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1