{"title":"QB-II for Evaluating the Reliability of Binary-State Networks","authors":"W. Yeh","doi":"10.48550/arXiv.2205.14950","DOIUrl":null,"url":null,"abstract":" Current real-life applications of various networks such as utility (gas, water, electric, 4G/5G) networks, the Internet of Things, social networks, and supply chains. Reliability is one of the most popular tools for evaluating network performance. The fundamental structure of these networks is a binary state network. Distinctive methods have been proposed to efficiently assess binary-state network reliability. A new algorithm called QB-II (quick binary-addition tree algorithm II) is proposed to improve the efficiency of quick BAT, which is based on BAT and outperforms many algorithms. The proposed QB-II implements the shortest minimum cuts (MCs) to separate the entire BAT into main-BAT and sub-BATs, and the source-target matrix convolution products to connect these subgraphs intelligently to improve the efficiency. Twenty benchmark problems were used to validate the performance of the","PeriodicalId":21122,"journal":{"name":"Reliab. Eng. Syst. Saf.","volume":"43 1","pages":"108953"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliab. Eng. Syst. Saf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.14950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Current real-life applications of various networks such as utility (gas, water, electric, 4G/5G) networks, the Internet of Things, social networks, and supply chains. Reliability is one of the most popular tools for evaluating network performance. The fundamental structure of these networks is a binary state network. Distinctive methods have been proposed to efficiently assess binary-state network reliability. A new algorithm called QB-II (quick binary-addition tree algorithm II) is proposed to improve the efficiency of quick BAT, which is based on BAT and outperforms many algorithms. The proposed QB-II implements the shortest minimum cuts (MCs) to separate the entire BAT into main-BAT and sub-BATs, and the source-target matrix convolution products to connect these subgraphs intelligently to improve the efficiency. Twenty benchmark problems were used to validate the performance of the