Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging

Dongjin Lee, B. Kramer
{"title":"Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging","authors":"Dongjin Lee, B. Kramer","doi":"10.48550/arXiv.2212.02728","DOIUrl":null,"url":null,"abstract":"We propose novel methods for Conditional Value-at-Risk (CVaR) estimation for nonlinear systems under high-dimensional dependent random inputs. We develop a novel DD-GPCE-Kriging surrogate that merges dimensionally decomposed generalized polynomial chaos expansion and Kriging to accurately approximate nonlinear and nonsmooth random outputs. We use DD-GPCE-Kriging (1) for Monte Carlo simulation (MCS) and (2) within multifidelity importance sampling (MFIS). The MCS-based method samples from DD-GPCE-Kriging, which is efficient and accurate for high-dimensional dependent random inputs, yet introduces bias. Thus, we propose an MFIS-based method where DD-GPCE-Kriging determines the biasing density, from which we draw a few high-fidelity samples to provide an unbiased CVaR estimate. To accelerate the biasing density construction, we compute DD-GPCE-Kriging using a cheap-to-evaluate low-fidelity model. Numerical results for mathematical functions show that the MFIS-based method is more accurate than the MCS-based method when the output is nonsmooth. The scalability of the proposed methods and their applicability to complex engineering problems are demonstrated on a two-dimensional composite laminate with 28 (partly dependent) random inputs and a three-dimensional composite T-joint with 20 (partly dependent) random inputs. In the former, the proposed MFIS-based method achieves 104x speedup compared to standard MCS using the high-fidelity model, while accurately estimating CVaR with 1.15% error.","PeriodicalId":21122,"journal":{"name":"Reliab. Eng. Syst. Saf.","volume":"7 1","pages":"109208"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliab. Eng. Syst. Saf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.02728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose novel methods for Conditional Value-at-Risk (CVaR) estimation for nonlinear systems under high-dimensional dependent random inputs. We develop a novel DD-GPCE-Kriging surrogate that merges dimensionally decomposed generalized polynomial chaos expansion and Kriging to accurately approximate nonlinear and nonsmooth random outputs. We use DD-GPCE-Kriging (1) for Monte Carlo simulation (MCS) and (2) within multifidelity importance sampling (MFIS). The MCS-based method samples from DD-GPCE-Kriging, which is efficient and accurate for high-dimensional dependent random inputs, yet introduces bias. Thus, we propose an MFIS-based method where DD-GPCE-Kriging determines the biasing density, from which we draw a few high-fidelity samples to provide an unbiased CVaR estimate. To accelerate the biasing density construction, we compute DD-GPCE-Kriging using a cheap-to-evaluate low-fidelity model. Numerical results for mathematical functions show that the MFIS-based method is more accurate than the MCS-based method when the output is nonsmooth. The scalability of the proposed methods and their applicability to complex engineering problems are demonstrated on a two-dimensional composite laminate with 28 (partly dependent) random inputs and a three-dimensional composite T-joint with 20 (partly dependent) random inputs. In the former, the proposed MFIS-based method achieves 104x speedup compared to standard MCS using the high-fidelity model, while accurately estimating CVaR with 1.15% error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于维分解广义多项式混沌kriging的多保真条件风险值估计
本文提出了高维相关随机输入下非线性系统条件风险值(CVaR)估计的新方法。我们提出了一种新的DD-GPCE-Kriging代理,该代理融合了维分解广义多项式混沌展开和Kriging来精确逼近非线性和非光滑随机输出。我们将DD-GPCE-Kriging(1)用于蒙特卡罗模拟(MCS),(2)用于多保真度重要采样(MFIS)。基于mcs的方法从DD-GPCE-Kriging中采样,该方法对高维相关随机输入有效且准确,但会引入偏差。因此,我们提出了一种基于mfi的方法,其中DD-GPCE-Kriging确定偏倚密度,并从中提取一些高保真样本以提供无偏CVaR估计。为了加速偏置密度的构建,我们使用一种便宜的低保真度模型来计算DD-GPCE-Kriging。对数学函数的数值计算结果表明,当输出是非光滑时,基于mfi的方法比基于mcs的方法精度更高。在一个含28(部分依赖)随机输入的二维复合材料层压板和一个含20(部分依赖)随机输入的三维复合材料t形接头上,证明了所提出方法的可扩展性及其对复杂工程问题的适用性。在前者中,基于mfi的方法与使用高保真度模型的标准MCS相比,实现了104倍的加速,同时以1.15%的误差准确估计CVaR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flood risk assessment and mitigation for metro stations: An evidential-reasoning-based optimality approach considering uncertainty of subjective parameters Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems MAntRA: A framework for model agnostic reliability analysis Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1