Device independent activity monitoring using smart handhelds

Jayita Saha, C. Chowdhury, Supama Biswas
{"title":"Device independent activity monitoring using smart handhelds","authors":"Jayita Saha, C. Chowdhury, Supama Biswas","doi":"10.1109/CONFLUENCE.2017.7943184","DOIUrl":null,"url":null,"abstract":"Sensors embedded in smartphones, tabs can be extremely useful in providing reliable information on people's activities and behaviors, thereby ensuring a safe and sound living environment. Activity monitoring through posture identification is increasingly used for medical, surveillance and entertainment (gaming) applications. Major challenges for this task include making the task device independent, use of minimal number of sensors, position of the device, efficient feature extraction etc. Existing works mostly uses one or m ore specific devices for activity monitoring and does not focus on device independence. Ensuring energy efficiency through inexpensive feature extraction technique is another motivation. Consequently, in this paper, a machine learning based activity monitoring framework is proposed that provides device independence using inexpensive time domain features. Implementation of the framework with real devices indicates 96% accuracy with logistic regression when time domain features are used.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"85 1","pages":"406-411"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Sensors embedded in smartphones, tabs can be extremely useful in providing reliable information on people's activities and behaviors, thereby ensuring a safe and sound living environment. Activity monitoring through posture identification is increasingly used for medical, surveillance and entertainment (gaming) applications. Major challenges for this task include making the task device independent, use of minimal number of sensors, position of the device, efficient feature extraction etc. Existing works mostly uses one or m ore specific devices for activity monitoring and does not focus on device independence. Ensuring energy efficiency through inexpensive feature extraction technique is another motivation. Consequently, in this paper, a machine learning based activity monitoring framework is proposed that provides device independence using inexpensive time domain features. Implementation of the framework with real devices indicates 96% accuracy with logistic regression when time domain features are used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用智能手持设备进行设备独立活动监控
嵌入智能手机和标签中的传感器可以非常有用地提供有关人们活动和行为的可靠信息,从而确保安全和健康的生活环境。通过姿势识别的活动监测越来越多地用于医疗、监视和娱乐(游戏)应用。该任务的主要挑战包括使任务设备独立,使用最少数量的传感器,设备的位置,高效的特征提取等。现有的工作大多使用一个或多个特定的设备进行活动监控,而不关注设备的独立性。通过廉价的特征提取技术确保能源效率是另一个动机。因此,本文提出了一种基于机器学习的活动监测框架,该框架使用廉价的时域特征提供设备独立性。该框架在实际设备上的实现表明,当使用时域特征时,逻辑回归的准确率为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1