Observation of a Potential-Dependent Switch of Water Oxidation Mechanism on Co-Oxide-Based Catalysts

C. Lang, Jingyi Li, Ke R. Yang, Yuanxing Wang, Da He, James E. Thorne, Seth Croslow, Qi Dong, Yanyan Zhao, Gabriela Prostko, G. Brudvig, V. Batista, M. Waegele, Dunwei Wang
{"title":"Observation of a Potential-Dependent Switch of Water Oxidation Mechanism on Co-Oxide-Based Catalysts","authors":"C. Lang, Jingyi Li, Ke R. Yang, Yuanxing Wang, Da He, James E. Thorne, Seth Croslow, Qi Dong, Yanyan Zhao, Gabriela Prostko, G. Brudvig, V. Batista, M. Waegele, Dunwei Wang","doi":"10.2139/ssrn.3732357","DOIUrl":null,"url":null,"abstract":"O-O bond formation is a key elementary step of the water oxidation reaction. However, it is still unclear how the mechanism of O-O coupling depends on the applied electrode potential. Herein, using water-in-salt electrolytes, we systematically altered the water activity, which enabled us to probe the O-O bond forming mechanism on heterogeneous Co-based catalysts as a function of applied potential. We discovered that the water oxidation mechanism is sensitive to the applied potential: At relatively low driving force, the reaction proceeds through an intramolecular oxygen coupling mechanism, whereas the water nucleophilic attack mechanism prevails at high driving force. The observed mechanistic switch has major implications for the understanding and control of the water oxidation reaction on heterogeneous catalysts.","PeriodicalId":19542,"journal":{"name":"Organic Chemistry eJournal","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3732357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

O-O bond formation is a key elementary step of the water oxidation reaction. However, it is still unclear how the mechanism of O-O coupling depends on the applied electrode potential. Herein, using water-in-salt electrolytes, we systematically altered the water activity, which enabled us to probe the O-O bond forming mechanism on heterogeneous Co-based catalysts as a function of applied potential. We discovered that the water oxidation mechanism is sensitive to the applied potential: At relatively low driving force, the reaction proceeds through an intramolecular oxygen coupling mechanism, whereas the water nucleophilic attack mechanism prevails at high driving force. The observed mechanistic switch has major implications for the understanding and control of the water oxidation reaction on heterogeneous catalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于co -氧化物的催化剂上水氧化机制电位依赖开关的观察
O-O键的形成是水氧化反应的关键基本步骤。然而,O-O耦合的机制如何取决于所施加的电极电位仍不清楚。在这里,我们使用盐中水电解质系统地改变了水活度,这使我们能够探索异相co基催化剂上O-O键形成机制作为应用电位的函数。我们发现水氧化机制对外加电位敏感:在较低驱动力下,反应通过分子内氧偶联机制进行,而在高驱动力下,反应以亲核攻击机制为主。所观察到的机理转换对于理解和控制非均相催化剂上的水氧化反应具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activated Gallic Acid as Radical and Oxygen Scavenger in Biodegradable Packaging Film Sustainable Development of Graphene Oxide from Pine Leaves for Electrochemical Energy Storage and Corrosion Protection Green Synthesis of Silver Nanoparticles Using Stem Bark Extract of Annona senegalensis: Characterization and Its Antibacterial Potency Novel 3D Flower Like ZnO/MnV 2O 6 Heterojunction as an Efficient Adsorbent for the Removal of Imidacloprid and Photocatalyst for Degradation of Organic Dyes in Waste Water A 2D Porous Pb-MOF Based on 2-Nitroimidazole: CO 2 Adsorption, Electronic Structure and Luminescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1