A Computational Framework for Human-centric Vehicular Crashworthiness Design and Decision-Making Under Uncertainty

A. Nellippallil, P. Berthelson, L. Peterson, R. Prabhu
{"title":"A Computational Framework for Human-centric Vehicular Crashworthiness Design and Decision-Making Under Uncertainty","authors":"A. Nellippallil, P. Berthelson, L. Peterson, R. Prabhu","doi":"10.1115/1.4053515","DOIUrl":null,"url":null,"abstract":"\n Government agencies, globally, strive to minimize the likelihood and frequency of human death and severe injury on road transport systems. From an engineering design standpoint, the minimization of these road accident effects on occupants becomes a critical design goal. This necessitates the quantification and management of injury risks on the human body in response to several vehicular impact variables and their associated uncertainties for different crash scenarios. In this paper, we present a decision-based, robust design framework to quantify and manage the impact-based injury risks on occupants for different computational model-based car crash scenarios. The key functionality offered is the designer's capability to conduct robust concept exploration focused on managing the selected impact variables and associated uncertainties, such that injury risks are controlled within acceptable levels. The framework's efficacy is tested for near-side impact scenarios with impact velocity and angle of impact as the critical variables of interest. Two injury criteria, namely, Head Injury Criterion (HIC) and Lateral Neck Injury Criteria (Lateral Nij), are selected to quantitatively measure the head and neck injury risks in each crash simulation. Using the framework, a robust design problem is formulated to determine the combination of impact variables that best satisfice the injury goals defined. The framework and associated design constructs are generic and support the formulation and decision-based robust concept exploration of similar problems involving models under uncertainty. Our focus in this paper is on the framework rather than the results per se.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"13 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Government agencies, globally, strive to minimize the likelihood and frequency of human death and severe injury on road transport systems. From an engineering design standpoint, the minimization of these road accident effects on occupants becomes a critical design goal. This necessitates the quantification and management of injury risks on the human body in response to several vehicular impact variables and their associated uncertainties for different crash scenarios. In this paper, we present a decision-based, robust design framework to quantify and manage the impact-based injury risks on occupants for different computational model-based car crash scenarios. The key functionality offered is the designer's capability to conduct robust concept exploration focused on managing the selected impact variables and associated uncertainties, such that injury risks are controlled within acceptable levels. The framework's efficacy is tested for near-side impact scenarios with impact velocity and angle of impact as the critical variables of interest. Two injury criteria, namely, Head Injury Criterion (HIC) and Lateral Neck Injury Criteria (Lateral Nij), are selected to quantitatively measure the head and neck injury risks in each crash simulation. Using the framework, a robust design problem is formulated to determine the combination of impact variables that best satisfice the injury goals defined. The framework and associated design constructs are generic and support the formulation and decision-based robust concept exploration of similar problems involving models under uncertainty. Our focus in this paper is on the framework rather than the results per se.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定条件下以人为本的汽车耐撞性设计与决策计算框架
全球的政府机构努力尽量减少道路运输系统造成人员死亡和重伤的可能性和频率。从工程设计的角度来看,将这些交通事故对乘员的影响最小化是一个关键的设计目标。这就需要量化和管理不同碰撞场景下的人体损伤风险,以应对几种车辆碰撞变量及其相关的不确定性。在本文中,我们提出了一个基于决策的稳健设计框架,用于量化和管理不同基于计算模型的汽车碰撞场景中乘员基于冲击的伤害风险。该系统提供的关键功能是,设计师能够进行稳健的概念探索,专注于管理选定的冲击变量和相关的不确定性,从而将伤害风险控制在可接受的范围内。以冲击速度和冲击角度为关键变量,对该框架的有效性进行了测试。在每次碰撞模拟中,我们选择了两个损伤标准,即Head injury Criterion (HIC)和Lateral Neck injury criteria (Lateral Nij)来定量衡量头颈部损伤的风险。使用该框架,制定了一个稳健的设计问题,以确定最能满足所定义的损伤目标的冲击变量组合。框架和相关的设计结构是通用的,支持不确定性下涉及模型的类似问题的公式化和基于决策的鲁棒概念探索。本文的重点是框架,而不是结果本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
期刊最新文献
Verification and Validation of Rotating Machinery Using Digital Twin Risk Approach Based On the Fram Model for Vessel Traffic Management A Fault Detection Framework Based On Data-driven Digital Shadows Domain Adaptation Of Population-Based Of Bolted Joint Structures For Loss Detection Of Tightening Torque Human-Comfort Evaluation for A Patient-Transfer Robot through A Human-Robot Mechanical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1