JiaWen Lim, Moritz Petersen, Maximilian Bunz, Claudia Simon, Michael Schindler
{"title":"Flow cytometry based-FRET: basics, novel developments and future perspectives.","authors":"JiaWen Lim, Moritz Petersen, Maximilian Bunz, Claudia Simon, Michael Schindler","doi":"10.1007/s00018-022-04232-2","DOIUrl":null,"url":null,"abstract":"<p><p>Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.</p>","PeriodicalId":39376,"journal":{"name":"Edinburgh Journal of Botany","volume":"72 1","pages":"217"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edinburgh Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-022-04232-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.
期刊介绍:
Edinburgh Journal of Botany is an international journal of plant systematics covering related aspects of biodiversity, conservation science and phytogeography for plants and fungi. The journal is a particularly valued forum for research on South East and South West Asian, Sino-Himalayan and Brazilian biodiversity. The journal also publishes important work on European, Central American and African biodiversity and encourages submissions from throughout the world. Commissioned book reviews are also included. All papers are peer reviewed and an international editorial board provides a body of expertise to reflect the wide range of work published and the geographical spread of the journal’s authors and readers. Published on behalf of the Royal Botanic Garden Edinburgh