{"title":"Modeling, Studying and Manufacturing a Cultivator Rack from Composite Materials","authors":"I. Antypas, A. Dyachenko","doi":"10.15507/0236-2910.028.201803.366-378","DOIUrl":null,"url":null,"abstract":"Introduction. The composite materials have not been widely used in the Russian economy (especially in agriculture) until recently. It is relevant to use them for manufacturing some parts of agricultural machinery, for example, racks of cultivator paws. These parts often break down because of stress concentration in the places where their thickness changes during the time of plowing. The stress can be decreased by using com- posite materials. Materials and Methods. This paper presents the study results on the use of composite materials for manufacturing of cultivator racks with the appropriate selection of the volume ratio of fibers in each of the layers of fabric and layers of binder. Results. Based on the results, the design safety factor was calculated to be equal to 2. It should be noted that the values of the mechanical characteristics of the material changed because of the presence of a porosity coefficient, which was 11.6 %, while the allowable value was 4%. Field tests have shown the durability of a new composite material, even under severe operating conditions, compared to a conventional rack made of alloy steel. Conclusions. Studying the mechanical behavior of the rack geometric model and modeling a material with high mechanical properties, which later was used for manufacturing a composite material, we could get the minimum safety factor of 4, with the maximum safety factor for workers – 15. The racks from composite material are economically feasible as less expensive than used steel racks.","PeriodicalId":53930,"journal":{"name":"Mordovia University Bulletin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mordovia University Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/0236-2910.028.201803.366-378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Introduction. The composite materials have not been widely used in the Russian economy (especially in agriculture) until recently. It is relevant to use them for manufacturing some parts of agricultural machinery, for example, racks of cultivator paws. These parts often break down because of stress concentration in the places where their thickness changes during the time of plowing. The stress can be decreased by using com- posite materials. Materials and Methods. This paper presents the study results on the use of composite materials for manufacturing of cultivator racks with the appropriate selection of the volume ratio of fibers in each of the layers of fabric and layers of binder. Results. Based on the results, the design safety factor was calculated to be equal to 2. It should be noted that the values of the mechanical characteristics of the material changed because of the presence of a porosity coefficient, which was 11.6 %, while the allowable value was 4%. Field tests have shown the durability of a new composite material, even under severe operating conditions, compared to a conventional rack made of alloy steel. Conclusions. Studying the mechanical behavior of the rack geometric model and modeling a material with high mechanical properties, which later was used for manufacturing a composite material, we could get the minimum safety factor of 4, with the maximum safety factor for workers – 15. The racks from composite material are economically feasible as less expensive than used steel racks.