Ventilation air methane: a simulation of an optimised process of abatement with power and cooling

F. Nadaraju, A. Maddocks, J. Zanganeh, B. Moghtaderi
{"title":"Ventilation air methane: a simulation of an optimised process of abatement with power and cooling","authors":"F. Nadaraju, A. Maddocks, J. Zanganeh, B. Moghtaderi","doi":"10.1080/25726668.2019.1704546","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ventilation air methane is low concentration methane (below 1 vol. %) emitted from an underground coal mine. High ventilation air volumes circulated through the mine, ensure that the methane remains at a safe concentration. In 2016, the Australian Government reported fugitive emissions of methane from underground coal mines at approximately 19.0 million tonnes (CO2-equivalent) which was about 4.0% of Australia's national greenhouse gas emissions. Therefore, an optimised process of heat recovery from a fluidised-bed VAM abatement reactor, to produce power and cooling was studied. For a ventilation flow rate of 20 m3/s, the minimum methane concentration for a direct gas turbine was 0.45 vol. % at a reactor temperature of 630°C and compressor pressure of 1.5 bar. An indirect gas turbine process operated with a minimum methane concentration was 0.4 vol. % at a reactor temperature of 630°C, compressor pressure of 4.0 bar and turbine flow rate of 2.2 kg/s.","PeriodicalId":44166,"journal":{"name":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726668.2019.1704546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Ventilation air methane is low concentration methane (below 1 vol. %) emitted from an underground coal mine. High ventilation air volumes circulated through the mine, ensure that the methane remains at a safe concentration. In 2016, the Australian Government reported fugitive emissions of methane from underground coal mines at approximately 19.0 million tonnes (CO2-equivalent) which was about 4.0% of Australia's national greenhouse gas emissions. Therefore, an optimised process of heat recovery from a fluidised-bed VAM abatement reactor, to produce power and cooling was studied. For a ventilation flow rate of 20 m3/s, the minimum methane concentration for a direct gas turbine was 0.45 vol. % at a reactor temperature of 630°C and compressor pressure of 1.5 bar. An indirect gas turbine process operated with a minimum methane concentration was 0.4 vol. % at a reactor temperature of 630°C, compressor pressure of 4.0 bar and turbine flow rate of 2.2 kg/s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通风空气甲烷:模拟一个优化的过程与电力和冷却减排
通风空气中的甲烷是煤矿井下排放的低浓度甲烷(低于1vol . %)。高通风量通过矿井循环,确保甲烷保持在安全浓度。2016年,澳大利亚政府报告称,地下煤矿的甲烷逸出排放量约为1900万吨(二氧化碳当量),约占澳大利亚全国温室气体排放量的4.0%。为此,对流化床VAM减污反应器的热回收工艺进行了优化研究。当通风流量为20 m3/s时,反应器温度为630℃,压气机压力为1.5 bar时,直接燃气轮机的最小甲烷浓度为0.45 vol. %。在反应器温度630℃,压缩机压力4.0 bar,涡轮流量2.2 kg/s的条件下,甲烷最低浓度为0.4 vol. %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
5
期刊最新文献
Digital twins in the minerals industry – a comprehensive review Mining Metaverse – a future collaborative tool for best practice mining Reliability evaluation of CAN-bus connectors with tailored testing Sustainable open pit fleet management system: integrating economic and environmental objectives into truck allocation A Genetic algorithm scheme for large scale open-pit mine production scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1