Optimization conditions and decomposable algorithms for convertible nonconvex optimization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-02-15 DOI:10.23952/jnva.7.2023.1.07
M. Jiang, R. Shen, Z. Meng, C. Y. Dang
{"title":"Optimization conditions and decomposable algorithms for convertible nonconvex optimization","authors":"M. Jiang, R. Shen, Z. Meng, C. Y. Dang","doi":"10.23952/jnva.7.2023.1.07","DOIUrl":null,"url":null,"abstract":"This paper defines a convertible nonconvex function(CN function for short) and a weak (strong) uniform (decomposable, exact) CN function, proves the optimization conditions for their global solutions and proposes algorithms for solving the unconstrained optimization problems with the decomposable CN function. First, to illustrate the fact that some nonconvex functions, nonsmooth or discontinuous, are actually weak uniform CN functions, examples are given. The operational properties of the CN functions are proved, including addition, subtraction, multiplication, division and compound operations. Second, optimization conditions of the global optimal solution to unconstrained optimization with a weak uniform CN function are proved. Based on the unconstrained optimization problem with the decomposable CN function, a decomposable algorithm is proposed by its augmented Lagrangian penalty function and its convergence is proved. Numerical results show that an approximate global optimal solution to unconstrained optimization with a CN function may be obtained by the decomposable algorithms. The decomposable algorithm can effectively reduce the scale in solving the unconstrained optimization problem with the decomposable CN function. This paper provides a new idea for solving unconstrained nonconvex optimization problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.7.2023.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper defines a convertible nonconvex function(CN function for short) and a weak (strong) uniform (decomposable, exact) CN function, proves the optimization conditions for their global solutions and proposes algorithms for solving the unconstrained optimization problems with the decomposable CN function. First, to illustrate the fact that some nonconvex functions, nonsmooth or discontinuous, are actually weak uniform CN functions, examples are given. The operational properties of the CN functions are proved, including addition, subtraction, multiplication, division and compound operations. Second, optimization conditions of the global optimal solution to unconstrained optimization with a weak uniform CN function are proved. Based on the unconstrained optimization problem with the decomposable CN function, a decomposable algorithm is proposed by its augmented Lagrangian penalty function and its convergence is proved. Numerical results show that an approximate global optimal solution to unconstrained optimization with a CN function may be obtained by the decomposable algorithms. The decomposable algorithm can effectively reduce the scale in solving the unconstrained optimization problem with the decomposable CN function. This paper provides a new idea for solving unconstrained nonconvex optimization problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可转换非凸优化的优化条件和可分解算法
本文定义了可转换非凸函数(简称CN函数)和弱(强)一致(可分解,精确)CN函数,证明了它们全局解的优化条件,并提出了求解可分解CN函数的无约束优化问题的算法。首先,为了说明一些非凸函数、非光滑函数或不连续函数实际上是弱一致CN函数,给出了一些例子。证明了CN函数的运算性质,包括加、减、乘、除和复合运算。其次,证明了具有弱一致CN函数的无约束优化全局最优解的优化条件。针对具有可分解CN函数的无约束优化问题,提出了一种利用其增广拉格朗日惩罚函数的可分解算法,并证明了该算法的收敛性。数值结果表明,利用可分解算法可以得到具有CN函数的无约束优化问题的近似全局最优解。可分解算法在求解具有可分解CN函数的无约束优化问题时,可以有效地减小规模。本文为求解无约束非凸优化问题提供了一种新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1