COMMENTS ON THE ARTICLE AUTHORED BY M.V. MINTS AND K.A. DOKUKINA – THE BELOMORIAN ECLOGITE PROVINCE (EASTERN FENNOSCANDIAN SHIELD, RUSSIA): MESO-NEOARCHEAN OR LATE PALEOPROTEROZOIC?
{"title":"COMMENTS ON THE ARTICLE AUTHORED BY M.V. MINTS AND K.A. DOKUKINA – THE BELOMORIAN ECLOGITE PROVINCE (EASTERN FENNOSCANDIAN SHIELD, RUSSIA): MESO-NEOARCHEAN OR LATE PALEOPROTEROZOIC?","authors":"S. Skublov, A. Berezin, L. I. Salimgaraeva","doi":"10.5800/gt-2021-12-3-0544","DOIUrl":null,"url":null,"abstract":"The comments are given on the article authored by M.V. Mints and K.A. Dokukina – The Belomorian Eclogite Province (Eastern Fennoscandian Shield, Russia): Meso-Neoarchean or Late Paleoproterozoic? (Geodynamics & Tectonophysics 2020, 11 (1), 151–200). The Belomorian (White Sea) province of the Fennoscandia Shield is a key site for studying the tectonics of the early periods because numerous Precambrian eclogites have been found there. It was not anticipated, but the problem of age determinations of the eclogite metamorphism of gabbroids in the White Sea mobile belt has turned out to be extremely relevant not only for this region, but also for the Precambrian geology in general. The reason is that a number of authors determine the age of eclogites as Archean (2.7–2.8 Ga), which makes the White Sea mobile belt the only example of the Archean eclogite metamorphism in the world and, therefore, the only dated evidence in support of the plate tectonic model of the evolution of the Earth’s crust at the earliest stage of its formation. The article consistently provides a critical analysis of the arguments put forward by the supporters of the Archean age of the eclogites of the White Sea mobile belt. Special emphasis is made on the isotope geochronological and geochemical features of the composition of zircons from eclogite samples, as well as on the phase and chemical compositions and distribution patterns of mineral inclusions. Considering the age of eclogite metamorphism that led to the formation of eclogites in the White Sea mobile belt, we propose our interpretation based on a set of independent isotope geochemical dating methods, including the local U- Pb method for heterogeneous zircons with magmatic cores and eclogite rims, the Lu-Hf and Sm-Nd methods for the minerals of eclogite paragenesis (garnet and omphacite). And this age interpretation is fundamentally different from the one described in the commented article: all the three methods independently determine the eclogite metamorphism as Paleoproterozoic and yield the same age of circa 1.9 Ga. According to our data, the eclogites of the White Sea mobile belt are among the most ancient high-pressure rocks, their reliably established age of metamorphism is circa 1.9 Ga, and the age of the magmatic protolith is the range of 2.2–2.9 Ga.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2021-12-3-0544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The comments are given on the article authored by M.V. Mints and K.A. Dokukina – The Belomorian Eclogite Province (Eastern Fennoscandian Shield, Russia): Meso-Neoarchean or Late Paleoproterozoic? (Geodynamics & Tectonophysics 2020, 11 (1), 151–200). The Belomorian (White Sea) province of the Fennoscandia Shield is a key site for studying the tectonics of the early periods because numerous Precambrian eclogites have been found there. It was not anticipated, but the problem of age determinations of the eclogite metamorphism of gabbroids in the White Sea mobile belt has turned out to be extremely relevant not only for this region, but also for the Precambrian geology in general. The reason is that a number of authors determine the age of eclogites as Archean (2.7–2.8 Ga), which makes the White Sea mobile belt the only example of the Archean eclogite metamorphism in the world and, therefore, the only dated evidence in support of the plate tectonic model of the evolution of the Earth’s crust at the earliest stage of its formation. The article consistently provides a critical analysis of the arguments put forward by the supporters of the Archean age of the eclogites of the White Sea mobile belt. Special emphasis is made on the isotope geochronological and geochemical features of the composition of zircons from eclogite samples, as well as on the phase and chemical compositions and distribution patterns of mineral inclusions. Considering the age of eclogite metamorphism that led to the formation of eclogites in the White Sea mobile belt, we propose our interpretation based on a set of independent isotope geochemical dating methods, including the local U- Pb method for heterogeneous zircons with magmatic cores and eclogite rims, the Lu-Hf and Sm-Nd methods for the minerals of eclogite paragenesis (garnet and omphacite). And this age interpretation is fundamentally different from the one described in the commented article: all the three methods independently determine the eclogite metamorphism as Paleoproterozoic and yield the same age of circa 1.9 Ga. According to our data, the eclogites of the White Sea mobile belt are among the most ancient high-pressure rocks, their reliably established age of metamorphism is circa 1.9 Ga, and the age of the magmatic protolith is the range of 2.2–2.9 Ga.
期刊介绍:
The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.