Volumetric Video Streaming Data Reduction Method Using Front-mesh 3D Data

X. Zhao, T. Okuyama
{"title":"Volumetric Video Streaming Data Reduction Method Using Front-mesh 3D Data","authors":"X. Zhao, T. Okuyama","doi":"10.2312/pg.20211395","DOIUrl":null,"url":null,"abstract":"Volumetric video contents are attracting much attention across various industries for their six-degrees-of-freedom (6DoF) viewing experience. However, in terms of streaming, volumetric video contents still present challenges such as high data volume and bandwidth consumption, which results in high stress on the network. To solve this issue, we propose a method using frontmesh 3D data to reduce the data size without affecting the visual quality much from a user’s perspective. The proposed method also reduces decoding and import time on the client side, which enables faster playback of 3D data. We evaluated our method in terms of data reduction and computation complexity and conducted a qualitative analysis by comparing rendering results with reference data at different diagonal angles. Our method successfully reduces data volume and computation complexity with minimal visual quality loss. CCS Concepts • Information systems → Multimedia streaming; • Computing methodologies → Image compression;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"65 1","pages":"73-74"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20211395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Volumetric video contents are attracting much attention across various industries for their six-degrees-of-freedom (6DoF) viewing experience. However, in terms of streaming, volumetric video contents still present challenges such as high data volume and bandwidth consumption, which results in high stress on the network. To solve this issue, we propose a method using frontmesh 3D data to reduce the data size without affecting the visual quality much from a user’s perspective. The proposed method also reduces decoding and import time on the client side, which enables faster playback of 3D data. We evaluated our method in terms of data reduction and computation complexity and conducted a qualitative analysis by comparing rendering results with reference data at different diagonal angles. Our method successfully reduces data volume and computation complexity with minimal visual quality loss. CCS Concepts • Information systems → Multimedia streaming; • Computing methodologies → Image compression;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于前网格三维数据的体积视频流数据约简方法
体积视频内容因其六自由度(6DoF)的观看体验而受到各行业的广泛关注。然而,在流媒体方面,大容量视频内容仍然面临着数据量大和带宽消耗等挑战,这给网络带来了很大的压力。为了解决这个问题,我们提出了一种使用前网格3D数据的方法,在不影响用户视觉质量的情况下减少数据大小。该方法还减少了客户端的解码和导入时间,从而可以更快地播放3D数据。我们从数据减少和计算复杂度方面对我们的方法进行了评估,并将不同对角角下的渲染结果与参考数据进行了定性分析。该方法以最小的视觉质量损失成功地减少了数据量和计算复杂度。•信息系统→多媒体流;•计算方法→图像压缩;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1