Supporting the life cycle of complex technical systems on the basis of intelligent technologies and predictive analytics

V. Blinov, S. Valeev, N. Kondratyeva, R. Karimov, Alexey S. Kovtunenko, E. Kuzmina
{"title":"Supporting the life cycle of complex technical systems on the basis of intelligent technologies and predictive analytics","authors":"V. Blinov, S. Valeev, N. Kondratyeva, R. Karimov, Alexey S. Kovtunenko, E. Kuzmina","doi":"10.18287/1613-0073-2019-2416-314-323","DOIUrl":null,"url":null,"abstract":"The application of predictive analytics in the design, production and operation to achieve the efficiency of the life cycle of complex technical systems is discussed. A predictive model of information support for the life cycle of a microsatellite propulsion system based on a neural network system is proposed. The predictive model can solve the problem of estimating fuel consumption, diagnosing and detecting possible failures of a small propulsion system.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-314-323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The application of predictive analytics in the design, production and operation to achieve the efficiency of the life cycle of complex technical systems is discussed. A predictive model of information support for the life cycle of a microsatellite propulsion system based on a neural network system is proposed. The predictive model can solve the problem of estimating fuel consumption, diagnosing and detecting possible failures of a small propulsion system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持基于智能技术和预测分析的复杂技术系统的生命周期
讨论了预测分析在复杂技术系统设计、生产和运行中的应用,以实现复杂技术系统生命周期的效率。提出了一种基于神经网络的微卫星推进系统生命周期信息支持预测模型。该预测模型可以解决小型推进系统的油耗估计、故障诊断和故障检测等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1