Superiority of Data Mining Techniques to Predict the Amount of Power Generated by Thermal Power Plants

Waleed Hamed Ahmed Eisa, Naomie Bt Salim
{"title":"Superiority of Data Mining Techniques to Predict the Amount of Power Generated by Thermal Power Plants","authors":"Waleed Hamed Ahmed Eisa, Naomie Bt Salim","doi":"10.53332/kuej.v5i2.1029","DOIUrl":null,"url":null,"abstract":"This paper presents the superiority of data mining techniques in predicting the amount of power generated by thermal power plants, over the traditional approaches that use thermodynamic laws or the power plant manufacturer’s guides. The paper first compares between amount of power calculated using thermodynamic laws, and the amount of power predicted using manufacturers’ guides with the actual power generated. Then prediction model was built to predict the amount of generated power using the controllable parameters at turbine inlet. Models were evaluated using separate test sets, or cross validation in case of small sets. The values predicted by this model is then compared with actual and other predicted values to prove that data mining tool is most accurate than traditional methods.","PeriodicalId":23461,"journal":{"name":"University of Khartoum Engineering Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Khartoum Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53332/kuej.v5i2.1029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the superiority of data mining techniques in predicting the amount of power generated by thermal power plants, over the traditional approaches that use thermodynamic laws or the power plant manufacturer’s guides. The paper first compares between amount of power calculated using thermodynamic laws, and the amount of power predicted using manufacturers’ guides with the actual power generated. Then prediction model was built to predict the amount of generated power using the controllable parameters at turbine inlet. Models were evaluated using separate test sets, or cross validation in case of small sets. The values predicted by this model is then compared with actual and other predicted values to prove that data mining tool is most accurate than traditional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘技术在火电厂发电量预测中的优势
本文介绍了数据挖掘技术在预测火力发电厂发电量方面的优势,而不是使用热力学定律或发电厂制造商指南的传统方法。本文首先比较了用热力学定律计算的功率和用厂家指南预测的功率与实际产生的功率。然后建立预测模型,利用涡轮进口的可控参数对发电量进行预测。使用单独的测试集评估模型,或者在小集的情况下进行交叉验证。然后将该模型的预测值与实际预测值和其他预测值进行比较,证明数据挖掘工具比传统方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality Aspects of Manually Transported Drinking Water in the Outskirts of Khartoum State Pixel-Vernier: A General Image-Based Approach For Particle Size Distribution Estimation Object Video Tracking using a Pan-Tilt-Zoom System Modelling of Stratified River Bank Erosion Due to Undercutting Self-optimising Control, a Batch Distillation Simulation Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1