Raymundo M. Campos Vázquez, E B Sergio López-Araiza
{"title":"Grandes datos, Google y desempleo","authors":"Raymundo M. Campos Vázquez, E B Sergio López-Araiza","doi":"10.24201/ee.v35i1.399","DOIUrl":null,"url":null,"abstract":"espanolUtilizamos datos de busquedas en Google sobre empleo para pronosticar la tasa de desempleo en Mexico. Discutimos la bibliografia relacionada con nowcasting y big data donde se utilizan datos generados en internet para predecir desempleo. Ademas, explicamos algoritmos de aprendizaje que sirven para escoger el mejor modelo de prediccion. Finalmente, se aplican estos algoritmos para encontrar el modelo que mejor prediga la tasa de desempleo en Mexico. En terminos de politicas publicas, creemos que los datos generados a traves de internet y los nuevos metodos estadisticos son claves para mejorar el diseno y la pertinencia de las intervenciones. EnglishWe use Google Trends data for employment opportunities related reply in order to forecast the unemployment rate in Mexico. We begin by discussing the literature related to big data and nowcasting in which user generated data is used to forecast unemployment. Afterwards, we explain the basics of several machine learning algorithms. Finally, we implement such algorithms in order to find the best model to predict unemployment using both Google Trends queries and unemployment lags. From a public policy perspective, we believe that both user generated data and new statistical methods may provide great tools for the design of policy interventions.","PeriodicalId":43766,"journal":{"name":"Estudios De Economia","volume":"397 1","pages":"125-151"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estudios De Economia","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.24201/ee.v35i1.399","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
espanolUtilizamos datos de busquedas en Google sobre empleo para pronosticar la tasa de desempleo en Mexico. Discutimos la bibliografia relacionada con nowcasting y big data donde se utilizan datos generados en internet para predecir desempleo. Ademas, explicamos algoritmos de aprendizaje que sirven para escoger el mejor modelo de prediccion. Finalmente, se aplican estos algoritmos para encontrar el modelo que mejor prediga la tasa de desempleo en Mexico. En terminos de politicas publicas, creemos que los datos generados a traves de internet y los nuevos metodos estadisticos son claves para mejorar el diseno y la pertinencia de las intervenciones. EnglishWe use Google Trends data for employment opportunities related reply in order to forecast the unemployment rate in Mexico. We begin by discussing the literature related to big data and nowcasting in which user generated data is used to forecast unemployment. Afterwards, we explain the basics of several machine learning algorithms. Finally, we implement such algorithms in order to find the best model to predict unemployment using both Google Trends queries and unemployment lags. From a public policy perspective, we believe that both user generated data and new statistical methods may provide great tools for the design of policy interventions.