Grandes datos, Google y desempleo

IF 0.4 4区 经济学 Q4 ECONOMICS Estudios De Economia Pub Date : 2020-01-01 DOI:10.24201/ee.v35i1.399
Raymundo M. Campos Vázquez, E B Sergio López-Araiza
{"title":"Grandes datos, Google y desempleo","authors":"Raymundo M. Campos Vázquez, E B Sergio López-Araiza","doi":"10.24201/ee.v35i1.399","DOIUrl":null,"url":null,"abstract":"espanolUtilizamos datos de busquedas en Google sobre empleo para pronosticar la tasa de desempleo en Mexico. Discutimos la bibliografia relacionada con nowcasting y big data donde se utilizan datos generados en internet para predecir desempleo. Ademas, explicamos algoritmos de aprendizaje que sirven para escoger el mejor modelo de prediccion. Finalmente, se aplican estos algoritmos para encontrar el modelo que mejor prediga la tasa de desempleo en Mexico. En terminos de politicas publicas, creemos que los datos generados a traves de internet y los nuevos metodos estadisticos son claves para mejorar el diseno y la pertinencia de las intervenciones. EnglishWe use Google Trends data for employment opportunities related reply in order to forecast the unemployment rate in Mexico. We begin by discussing the literature related to big data and nowcasting in which user generated data is used to forecast unemployment. Afterwards, we explain the basics of several machine learning algorithms. Finally, we implement such algorithms in order to find the best model to predict unemployment using both Google Trends queries and unemployment lags. From a public policy perspective, we believe that both user generated data and new statistical methods may provide great tools for the design of policy interventions.","PeriodicalId":43766,"journal":{"name":"Estudios De Economia","volume":"397 1","pages":"125-151"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estudios De Economia","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.24201/ee.v35i1.399","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

espanolUtilizamos datos de busquedas en Google sobre empleo para pronosticar la tasa de desempleo en Mexico. Discutimos la bibliografia relacionada con nowcasting y big data donde se utilizan datos generados en internet para predecir desempleo. Ademas, explicamos algoritmos de aprendizaje que sirven para escoger el mejor modelo de prediccion. Finalmente, se aplican estos algoritmos para encontrar el modelo que mejor prediga la tasa de desempleo en Mexico. En terminos de politicas publicas, creemos que los datos generados a traves de internet y los nuevos metodos estadisticos son claves para mejorar el diseno y la pertinencia de las intervenciones. EnglishWe use Google Trends data for employment opportunities related reply in order to forecast the unemployment rate in Mexico. We begin by discussing the literature related to big data and nowcasting in which user generated data is used to forecast unemployment. Afterwards, we explain the basics of several machine learning algorithms. Finally, we implement such algorithms in order to find the best model to predict unemployment using both Google Trends queries and unemployment lags. From a public policy perspective, we believe that both user generated data and new statistical methods may provide great tools for the design of policy interventions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据,谷歌和失业
我们使用谷歌就业搜索数据来预测墨西哥的失业率。我们讨论了与nowcasting和大数据相关的文献,这些文献使用互联网生成的数据来预测失业。此外,我们还解释了用于选择最佳预测模型的学习算法。最后,应用这些算法找到最能预测墨西哥失业率的模型。在公共政策方面,我们认为通过互联网产生的数据和新的统计方法是改进干预措施的设计和相关性的关键。我们使用谷歌趋势数据进行就业机会相关回复,以预测墨西哥的失业率。我们首先讨论与大数据和预测相关的文献,其中用户生成的数据被用来预测失业。= =地理= =根据美国人口普查,这个县的面积为。最后,我们实现了这样的算法,利用谷歌趋势查询和失业滞后找到预测失业的最佳模型。从公共政策的角度来看,我们认为用户生成的数据和新的统计方法都可以为政策干预的设计提供很好的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
4
审稿时长
12 weeks
期刊最新文献
Efeitos do BNDES Finame nas firmas brasileiras: uma análise de sobrevivência para os anos de 2002 a 2016 Diferença salarial e taxa de participação no mercado de trabalho brasileiro: uma análise a partir do sexo dos indivíduos Previdência social e migração: O que acontece com os trabalhadores que saem do Brasil e se aposentam na Espanha e em Portugal? Early childhood education effect on children’s vocabulary A trajetória de Tobias de Lacerda Martins Moscoso entre a Escola Politécnica e a Econometric Society: uma história inacabada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1