Results for the heat transfer of a fin with exponential-law temperature-dependent thermal conductivity and power-law temperature-dependent heat transfer coefficients
{"title":"Results for the heat transfer of a fin with exponential-law temperature-dependent thermal conductivity and power-law temperature-dependent heat transfer coefficients","authors":"E. Shivanian, Leyla AhmadSoltani, F. Sohrabi","doi":"10.1515/nleng-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this article, thermal behavior analysis of nonlinear fin problem with power-law heat transfer coefficient is studied to determine temperature distribution. This new supposition for the thermal conductivity, exponential-law temperature dependent, makes it to be nonlinear that is a general case in some sense. It is shown that the governing fin equation, that is, a nonlinear second-order differential equation, is exactly solvable with proper boundary conditions. To this purpose, the order of differential equation is reduced and then is converted into a total differential equation by multiplying a proper integration operant. An exact analytical solution is given to advance physical meaning, and the existence of unique solution for some specific values of the parameters of the model is demonstrated. The results are shown graphically. It is observed that fin efficiency is decreasing with respect to the power-law mode for heat transfer.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"123 1","pages":"29 - 34"},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, thermal behavior analysis of nonlinear fin problem with power-law heat transfer coefficient is studied to determine temperature distribution. This new supposition for the thermal conductivity, exponential-law temperature dependent, makes it to be nonlinear that is a general case in some sense. It is shown that the governing fin equation, that is, a nonlinear second-order differential equation, is exactly solvable with proper boundary conditions. To this purpose, the order of differential equation is reduced and then is converted into a total differential equation by multiplying a proper integration operant. An exact analytical solution is given to advance physical meaning, and the existence of unique solution for some specific values of the parameters of the model is demonstrated. The results are shown graphically. It is observed that fin efficiency is decreasing with respect to the power-law mode for heat transfer.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.