Anh Nguyen, D. Kanoulas, D. Caldwell, N. Tsagarakis
{"title":"Object-based affordances detection with Convolutional Neural Networks and dense Conditional Random Fields","authors":"Anh Nguyen, D. Kanoulas, D. Caldwell, N. Tsagarakis","doi":"10.1109/IROS.2017.8206484","DOIUrl":null,"url":null,"abstract":"We present a new method to detect object affordances in real-world scenes using deep Convolutional Neural Networks (CNN), an object detector and dense Conditional Random Fields (CRF). Our system first trains an object detector to generate bounding box candidates from the images. A deep CNN is then used to learn the depth features from these bounding boxes. Finally, these feature maps are post-processed with dense CRF to improve the prediction along class boundaries. The experimental results on our new challenging dataset show that the proposed approach outperforms recent state-of-the-art methods by a substantial margin. Furthermore, from the detected affordances we introduce a grasping method that is robust to noisy data. We demonstrate the effectiveness of our framework on the full-size humanoid robot WALK-MAN using different objects in real-world scenarios.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"11 1","pages":"5908-5915"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113
Abstract
We present a new method to detect object affordances in real-world scenes using deep Convolutional Neural Networks (CNN), an object detector and dense Conditional Random Fields (CRF). Our system first trains an object detector to generate bounding box candidates from the images. A deep CNN is then used to learn the depth features from these bounding boxes. Finally, these feature maps are post-processed with dense CRF to improve the prediction along class boundaries. The experimental results on our new challenging dataset show that the proposed approach outperforms recent state-of-the-art methods by a substantial margin. Furthermore, from the detected affordances we introduce a grasping method that is robust to noisy data. We demonstrate the effectiveness of our framework on the full-size humanoid robot WALK-MAN using different objects in real-world scenarios.