Dynamic data of body weight and feed intake in fattening pigs, and the determination of energetic allocation factors using a dynamic linear model

G. Lenoir , K. Kashefifard , C. Chesnet , L. Flatres-Grall , R. Muñoz-Tamayo
{"title":"Dynamic data of body weight and feed intake in fattening pigs, and the determination of energetic allocation factors using a dynamic linear model","authors":"G. Lenoir ,&nbsp;K. Kashefifard ,&nbsp;C. Chesnet ,&nbsp;L. Flatres-Grall ,&nbsp;R. Muñoz-Tamayo","doi":"10.1016/j.anopes.2022.100014","DOIUrl":null,"url":null,"abstract":"<div><p>A dataset of 100 pigs, from the Piétrain NN Français line raised at the AXIOM boar testing station in 2020, was used. The farm was equipped with an automatic feeding system, recording individual weight and feed intake at each visit. We used a dynamic linear regression model to characterise the evolution of the energetic allocation factor (<em>α<sub>t</sub></em>) which represents the link between the cumulative net energy available (estimated from feed intake) and cumulative weight gain during the fattening period. The data were imported using an R script to estimate the allocation factor for a given animal. The dataset and R script are useful resources to study feed intake, growth dynamics and the relationship between these two variables.</p></div>","PeriodicalId":100083,"journal":{"name":"Animal - Open Space","volume":"1 1","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772694022000115/pdfft?md5=311fbfea84dcf22a6594405cffd26d44&pid=1-s2.0-S2772694022000115-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal - Open Space","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772694022000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A dataset of 100 pigs, from the Piétrain NN Français line raised at the AXIOM boar testing station in 2020, was used. The farm was equipped with an automatic feeding system, recording individual weight and feed intake at each visit. We used a dynamic linear regression model to characterise the evolution of the energetic allocation factor (αt) which represents the link between the cumulative net energy available (estimated from feed intake) and cumulative weight gain during the fattening period. The data were imported using an R script to estimate the allocation factor for a given animal. The dataset and R script are useful resources to study feed intake, growth dynamics and the relationship between these two variables.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用动态线性模型研究育肥猪体重和采食量的动态数据及能量分配因素
该研究使用了一个由100头猪组成的数据集,这些猪来自2020年在AXIOM公猪测试站饲养的pisamutrain NN franais品系。该养殖场配备了自动饲喂系统,在每次访问时记录个体体重和采食量。我们使用动态线性回归模型来表征能量分配因子(αt)的演变,αt代表了育肥期间累积净可用能量(从采食量估计)与累积增重之间的联系。使用R脚本导入数据以估计给定动物的分配因子。该数据集和R脚本是研究采食量、生长动态以及两者之间关系的有用资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the breed and litter breed composition on the growth, survival, and health of rabbits The effect of age on D20, D40 and live foal rates in the Clydesdale mare Impact of the amount of milk replacer offers to Holstein dairy heifers on pre- and postweaning growth Corrigendum to “The role of anti-E. coli antibody from maternal colostrum on the colonization of newborn dairy calves gut with Escherichia coli and the development of clinical diarrhea” [Animal Open Space 2 (2023) 100037] Method: Body composition assessment of sows using dual-energy X-ray absorptiometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1