Coupling in complex systems as information transfer across time scales

M. Paluš
{"title":"Coupling in complex systems as information transfer across time scales","authors":"M. Paluš","doi":"10.1098/rsta.2019.0094","DOIUrl":null,"url":null,"abstract":"Complex systems such as the human brain or the Earth's climate consist of many subsystems interacting in intricate, nonlinear ways. Moreover, variability of such systems extends over broad ranges of spatial and temporal scales and dynamical phenomena on different scales also influence each other. In order to explain how to detect cross-scale causal interactions, we review information-theoretic formulation of the Granger causality in combination with computational statistics (surrogate data method) and demonstrate how this method can be used to infer driver-response relations from amplitudes and phases of coupled nonlinear dynamical systems. Considering complex systems evolving on multiple time scales, the reviewed methodology starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then statistical associations, in particular, causality relations between phases or between phases and amplitudes on different time scales are tested using the conditional mutual information. As an application, we present the analysis of cross-scale interactions and information transfer in the dynamics of the El Niño Southern Oscillation. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2019.0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Complex systems such as the human brain or the Earth's climate consist of many subsystems interacting in intricate, nonlinear ways. Moreover, variability of such systems extends over broad ranges of spatial and temporal scales and dynamical phenomena on different scales also influence each other. In order to explain how to detect cross-scale causal interactions, we review information-theoretic formulation of the Granger causality in combination with computational statistics (surrogate data method) and demonstrate how this method can be used to infer driver-response relations from amplitudes and phases of coupled nonlinear dynamical systems. Considering complex systems evolving on multiple time scales, the reviewed methodology starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then statistical associations, in particular, causality relations between phases or between phases and amplitudes on different time scales are tested using the conditional mutual information. As an application, we present the analysis of cross-scale interactions and information transfer in the dynamics of the El Niño Southern Oscillation. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂系统中信息跨时间尺度传递的耦合
像人类大脑或地球气候这样的复杂系统由许多子系统组成,它们以复杂的非线性方式相互作用。此外,这类系统的变率在广泛的空间和时间尺度范围内扩展,不同尺度上的动力现象也相互影响。为了解释如何检测跨尺度因果相互作用,我们回顾了格兰杰因果关系的信息理论公式与计算统计学(替代数据法)的结合,并演示了如何使用该方法从耦合非线性动力系统的振幅和相位推断驾驶员-响应关系。考虑到复杂系统在多个时间尺度上的演化,该方法首先将多尺度信号的小波分解成有限带宽的准振荡模式,并使用其瞬时相位和幅度进行描述。然后利用条件互信息检验统计关联,特别是相位之间或相位与振幅在不同时间尺度上的因果关系。作为一个应用,我们提出了El Niño南方涛动动力学中的跨尺度相互作用和信息传递分析。本文是主题问题“耦合功能:物理、生物和社会科学中的动态相互作用机制”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The contribution of a catchment-scale advice network to successful agricultural drought adaptation in Northern Thailand Using machine learning to identify novel hydroclimate states The economics of managing water crises Benchmark worst droughts during the summer monsoon in India Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical–statistical forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1