{"title":"Identification of Profane Words in Cyberbullying Incidents within Social Networks","authors":"Alina Wan, F. Fariza, Mohd Masnizah","doi":"10.1633/JISTAP.2021.9.1.2","DOIUrl":null,"url":null,"abstract":"The popularity of social networking sites (SNS) has facilitated communication between users. The usage of SNS helps users in their daily life in various ways such as sharing of opinions, keeping in touch with old friends, making new friends, and getting information. However, some users misuse SNS to belittle or hurt others using profanities, which is typical in cyberbullying incidents. Thus, in this study, we aim to identify profane words from the ASKfm corpus to analyze the profane word distribution across four different roles involved in cyberbullying based on lexicon dictionary. These four roles are: harasser, victim, bystander that assists the bully, and bystander that defends the victim. Evaluation in this study focused on occurrences of the profane word for each role from the corpus. The top 10 common words used in the corpus are also identified and represented in a graph. Results from the analysis show that these four roles used profane words in their conversation with different weightage and distribution, even though the profane words used are mostly similar. The harasser is the first ranked that used profane words in the conversation compared to other roles. The results can be further explored and considered as a potential feature in a cyberbullying detection model using a machine learning approach. Results in this work will contribute to formulate the suitable representation. It is also useful in modeling a cyberbullying detection model based on the identification of profane word distribution across different cyberbullying roles in social networks for future works.","PeriodicalId":37582,"journal":{"name":"Journal of Information Science Theory and Practice","volume":"418 1","pages":"24-34"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1633/JISTAP.2021.9.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
The popularity of social networking sites (SNS) has facilitated communication between users. The usage of SNS helps users in their daily life in various ways such as sharing of opinions, keeping in touch with old friends, making new friends, and getting information. However, some users misuse SNS to belittle or hurt others using profanities, which is typical in cyberbullying incidents. Thus, in this study, we aim to identify profane words from the ASKfm corpus to analyze the profane word distribution across four different roles involved in cyberbullying based on lexicon dictionary. These four roles are: harasser, victim, bystander that assists the bully, and bystander that defends the victim. Evaluation in this study focused on occurrences of the profane word for each role from the corpus. The top 10 common words used in the corpus are also identified and represented in a graph. Results from the analysis show that these four roles used profane words in their conversation with different weightage and distribution, even though the profane words used are mostly similar. The harasser is the first ranked that used profane words in the conversation compared to other roles. The results can be further explored and considered as a potential feature in a cyberbullying detection model using a machine learning approach. Results in this work will contribute to formulate the suitable representation. It is also useful in modeling a cyberbullying detection model based on the identification of profane word distribution across different cyberbullying roles in social networks for future works.
期刊介绍:
The Journal of Information Science Theory and Practice (JISTaP) is an international journal that aims at publishing original studies, review papers and brief communications on information science theory and practice. The journal provides an international forum for practical as well as theoretical research in the interdisciplinary areas of information science, such as information processing and management, knowledge organization, scholarly communication and bibliometrics. To foster scholarly communication among researchers and practitioners of library and information science around the globe, JISTaP offers a no-fee open access publishing venue where a team of dedicated editors, reviewers and staff members volunteer their services to ensure rapid dissemination and communication of scholarly works that make significant contributions. In a modern society, where information production and consumption grow at an astronomical rate, the science of information management, organization, and analysis is invaluable in effective utilization of information. The key objective of the journal is to foster research that can contribute to advancements and innovations in the theory and practice of information and library science so as to promote timely application of the findings from scientific investigations to everyday life. Recognizing the importance of the global perspective with understanding of region-specific issues, JISTaP encourages submissions of manuscripts that discuss global implications of regional findings as well as regional implications of global findings.