A. A. Umar, I. Saaid, A. Sulaimon, R. Pilus, N. A. Amer, A. Halilu, B. M. Negash
{"title":"Characterization of Native Colloids and Study of Emulsions Stabilized by Asphaltene, Wax, Silicates and Calcites Using Optical Analyzer Turbiscan","authors":"A. A. Umar, I. Saaid, A. Sulaimon, R. Pilus, N. A. Amer, A. Halilu, B. M. Negash","doi":"10.2118/195082-MS","DOIUrl":null,"url":null,"abstract":"\n Water-in-oil petroleum emulsions were prepared using response surface methodology (RSM) based on box-Behnken design (BBD). The emulsions were prepared using a treated Malaysian offshore crude oil, where the saturates, aromatics, resins and asphaltenes (SARA) of the crude oil were extracted using a modified SARA analysis. Other native solids, wax and asphaltenes extracted from oilfield emulsions and other crude oils were used as the emulsifying agents. In this paper, we focus on the characterization of some oilfield solids extracted from Malaysian offshore fields and further investigated their potentials to stabilize petroleum emulsions. The effects of the solids alone, and in combination with asphaltene/resin and wax were studied using statistical methods and the stabilities of the emulsions examined using a Turbiscan optical analyzer. The main advantage of Turbiscan is to obtain a faster and more accurate detection of destabilization phenomena in non-diluted emulsion than can be detected by the naked-eye (observation), especially for an opaque and concentrated dispersion system. The sample characterizations were conducted with FTIR, TGA, FESEM/EDX, XRF and XRD. Results showed that the major native solids present in the samples were paraffins and calcium carbonate. Further analysis revealed that the solids by themselves do not significantly contribute to emulsion stability. However, in the presence of asphaltene/resin compounds, the prominent solids such as paraffins and calcium carbonate enhance the stability of the emulsion irrespective of asphaltene/resin concentrations.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195082-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Water-in-oil petroleum emulsions were prepared using response surface methodology (RSM) based on box-Behnken design (BBD). The emulsions were prepared using a treated Malaysian offshore crude oil, where the saturates, aromatics, resins and asphaltenes (SARA) of the crude oil were extracted using a modified SARA analysis. Other native solids, wax and asphaltenes extracted from oilfield emulsions and other crude oils were used as the emulsifying agents. In this paper, we focus on the characterization of some oilfield solids extracted from Malaysian offshore fields and further investigated their potentials to stabilize petroleum emulsions. The effects of the solids alone, and in combination with asphaltene/resin and wax were studied using statistical methods and the stabilities of the emulsions examined using a Turbiscan optical analyzer. The main advantage of Turbiscan is to obtain a faster and more accurate detection of destabilization phenomena in non-diluted emulsion than can be detected by the naked-eye (observation), especially for an opaque and concentrated dispersion system. The sample characterizations were conducted with FTIR, TGA, FESEM/EDX, XRF and XRD. Results showed that the major native solids present in the samples were paraffins and calcium carbonate. Further analysis revealed that the solids by themselves do not significantly contribute to emulsion stability. However, in the presence of asphaltene/resin compounds, the prominent solids such as paraffins and calcium carbonate enhance the stability of the emulsion irrespective of asphaltene/resin concentrations.