{"title":"Structure and cutting properties of WC-Co composites obtained by the SPS - Spark Plasma Sintering method","authors":"J. Wachowicz, Jeremi Gos, J. Wilkowski","doi":"10.5604/01.3001.0015.2356","DOIUrl":null,"url":null,"abstract":"Functional properties of WCCo composites obtained by the SPS – Spark Plasma Sintering method. The rapid development of the furniture market results in the need to produce tools with increasingly better properties which make it possible to increase the efficiency of the production. One of the prospective paths of development for blades intended for cutting wood-based materials are carbides made using the Spark Plasma Sintering method. It makes it possible to produce sinters with submicron or even nanometric WC grain size in a very short time and without the need for using inhibitors. As a result of the specific heating conditions, this method makes it possible to obtain a material having high parameters in comparison with the material produced using conventional methods. \nThis study aimed to determine the degree of wear of SPS tools compared to commercially available blades (of similar chemical composition). The results of research testing the basic properties (hardness, density, microstructure) of WCCo composites, obtained using the innovative SPS method, are included in the study. The quality of the produced tools and the intensity of wear of the blades made using the SPS method were evaluated. The results were compared to commercially available blades. The wear of individual blades was evaluated based on the machining of three-layer particleboard.\n\n","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of WULS, Forestry and Wood Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.2356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Functional properties of WCCo composites obtained by the SPS – Spark Plasma Sintering method. The rapid development of the furniture market results in the need to produce tools with increasingly better properties which make it possible to increase the efficiency of the production. One of the prospective paths of development for blades intended for cutting wood-based materials are carbides made using the Spark Plasma Sintering method. It makes it possible to produce sinters with submicron or even nanometric WC grain size in a very short time and without the need for using inhibitors. As a result of the specific heating conditions, this method makes it possible to obtain a material having high parameters in comparison with the material produced using conventional methods.
This study aimed to determine the degree of wear of SPS tools compared to commercially available blades (of similar chemical composition). The results of research testing the basic properties (hardness, density, microstructure) of WCCo composites, obtained using the innovative SPS method, are included in the study. The quality of the produced tools and the intensity of wear of the blades made using the SPS method were evaluated. The results were compared to commercially available blades. The wear of individual blades was evaluated based on the machining of three-layer particleboard.