Jakob Rom, F. Haas, T. Heckmann, Fabian Dremel, Fabian Fleischer, M. Altmann, M. Stark, M. Becht
{"title":"Establishing a record of extreme debris flow events in a high Alpine catchment since the end of the Little Ice Age using lichenometric dating","authors":"Jakob Rom, F. Haas, T. Heckmann, Fabian Dremel, Fabian Fleischer, M. Altmann, M. Stark, M. Becht","doi":"10.1080/04353676.2023.2187531","DOIUrl":null,"url":null,"abstract":"ABSTRACT Establishing a record of large debris flow events in high Alpine areas prior to the availability of high resolution remote sensing data can be very challenging. In this study, we investigate the debris flow activity in two tributary valleys of the Horlachtal catchment in Tyrol, Austria between the end of the Little Ice Age at about 1850 and the first available area wide aerial images from 1947. To accomplish this, we calculated a local lichenometric calibration curve using the long axis diameters of the five largest Rhizocarpon lichen thalli at 51 different reference locations. Because of the interval-censored dating of most of the reference sites, we established a bootstrapping approach within the calibration curve calculation process. With the help of the lichenometric calibration data, we were able to date 47 old debris flow deposits in the study area. The results indicate no increasing or decreasing trends in frequencies of extreme debris flow events. In addition, the results point to a very local character of debris flow triggering precipitation events, as we can detect major differences in neighbouring valleys. Lichenometric derived datings also provide temporal informations about the end of debris flow activity at some sites in the study area and thus can contribute to a better understanding of debris flow systems.","PeriodicalId":55112,"journal":{"name":"Geografiska Annaler Series A-Physical Geography","volume":"5 1","pages":"47 - 63"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografiska Annaler Series A-Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/04353676.2023.2187531","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Establishing a record of large debris flow events in high Alpine areas prior to the availability of high resolution remote sensing data can be very challenging. In this study, we investigate the debris flow activity in two tributary valleys of the Horlachtal catchment in Tyrol, Austria between the end of the Little Ice Age at about 1850 and the first available area wide aerial images from 1947. To accomplish this, we calculated a local lichenometric calibration curve using the long axis diameters of the five largest Rhizocarpon lichen thalli at 51 different reference locations. Because of the interval-censored dating of most of the reference sites, we established a bootstrapping approach within the calibration curve calculation process. With the help of the lichenometric calibration data, we were able to date 47 old debris flow deposits in the study area. The results indicate no increasing or decreasing trends in frequencies of extreme debris flow events. In addition, the results point to a very local character of debris flow triggering precipitation events, as we can detect major differences in neighbouring valleys. Lichenometric derived datings also provide temporal informations about the end of debris flow activity at some sites in the study area and thus can contribute to a better understanding of debris flow systems.
期刊介绍:
Geografiska Annaler: Series A, Physical Geography publishes original research in the field of Physical Geography with special emphasis on cold regions/high latitude, high altitude processes, landforms and environmental change, past, present and future.
The journal primarily promotes dissemination of regular research by publishing research-based articles. The journal also publishes thematic issues where collections of articles around a specific themes are gathered. Such themes are determined by the Editors upon request. Finally the journal wishes to promote knowledge and understanding of topics in Physical Geography, their origin, development and current standing through invited review articles.