Pulsed Spark Discharge in Deionized Water for Nanoparticle Synthesis: Electrical Measurement and Cavitation Bubble Study

A. Dorval, K. Géraud, A. Hamdan, F. Valensi
{"title":"Pulsed Spark Discharge in Deionized Water for Nanoparticle Synthesis: Electrical Measurement and Cavitation Bubble Study","authors":"A. Dorval, K. Géraud, A. Hamdan, F. Valensi","doi":"10.1109/NMDC50713.2021.9677548","DOIUrl":null,"url":null,"abstract":"Electrical discharges in dielectric liquids are considered as an efficient and eco-friendly technique for nanoparticle synthesis via controlled erosion of electrode. Understanding of mechanisms in the discharge and plasma-electrode interactions are needed to improve the efficiency of nanoparticles synthesis. In this study, we used a homemade pulsed power supply to produce spark discharges in deionized water with different electrodes, namely Cu, Al, and Steel. Voltage and current waveforms are acquired for discharges with various inter-electrode distances and applied voltages. The data is processed to report some characteristics of the discharges, such as breakdown voltage, discharge delay, injected charge, and energy. Also, we used a fast camera to visualize the dynamics of the post-discharge cavitation bubble. A relationship has been established between the discharge characteristics and the bubble dynamics; we found that higher is the injected energy larger is the bubble radius.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"135 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical discharges in dielectric liquids are considered as an efficient and eco-friendly technique for nanoparticle synthesis via controlled erosion of electrode. Understanding of mechanisms in the discharge and plasma-electrode interactions are needed to improve the efficiency of nanoparticles synthesis. In this study, we used a homemade pulsed power supply to produce spark discharges in deionized water with different electrodes, namely Cu, Al, and Steel. Voltage and current waveforms are acquired for discharges with various inter-electrode distances and applied voltages. The data is processed to report some characteristics of the discharges, such as breakdown voltage, discharge delay, injected charge, and energy. Also, we used a fast camera to visualize the dynamics of the post-discharge cavitation bubble. A relationship has been established between the discharge characteristics and the bubble dynamics; we found that higher is the injected energy larger is the bubble radius.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去离子水脉冲火花放电用于纳米粒子合成:电测量和空化泡研究
电介质液体中的放电被认为是一种高效且环保的通过控制电极侵蚀来合成纳米颗粒的技术。为了提高纳米粒子的合成效率,需要了解放电和等离子体电极相互作用的机制。在本研究中,我们使用自制的脉冲电源,在去离子水中使用不同的电极,即铜、铝和钢,产生火花放电。在不同的电极间距和施加电压下获得放电的电压和电流波形。对数据进行处理,以报告放电的一些特性,如击穿电压、放电延迟、注入电荷和能量。此外,我们使用快速相机来可视化放电后空化泡的动力学。建立了放电特性与气泡动力学之间的关系;我们发现,注入能量越高,气泡半径越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology control and optimization of nano-MgO-Mg(OH)2 composite via vapor steaming for effective CO2 capture Effect of Surface Charge Model in the Characterization of Two-dimensional Hydrogenated Nanocrystalline-diamond Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Device Simulation Making ultra-active antimicrobial copper possible through surface area enhancement A Sensitive Electrochemical Biosensors Based on Glassy Carbon Electrodes Integrated with Smartphone for Prostate Cancer Detection Quantum Transport in Conductive Bacterial Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1