PHASE SYNTHESIS OF BEAM-SCANNING REFLECTARRAY ANTENNA BASED ON DEEP LEARNING TECHNIQUE

Tao Shan, Maokun Li, Shenheng Xu, Fan Yang
{"title":"PHASE SYNTHESIS OF BEAM-SCANNING REFLECTARRAY ANTENNA BASED ON DEEP LEARNING TECHNIQUE","authors":"Tao Shan, Maokun Li, Shenheng Xu, Fan Yang","doi":"10.2528/pier21091307","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the feasibility of applying deep learning to phase synthesis of reflectarray antenna. A deep convolutional neural network (ConvNet) based on the architecture of AlexNet is built to predict the continuous phase distribution on reflectarray elements given the beam pattern. The proposed ConvNet is sufficiently trained with data set generated by array-theory method. With radiation pattern and beam direction arrays as input, the ConvNet can make real-time and fairly accurate predictions in milliseconds with the average relative error below 0.7%. This paper shows that deep convolutional neural networks can “learn” the principle of reflectarray phase synthesis due to their inherent powerful learning capacity. The proposed approach may provide us a potential scheme for real-time phase synthesis of antenna arrays in electromagnetic engineering.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier21091307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work, we investigate the feasibility of applying deep learning to phase synthesis of reflectarray antenna. A deep convolutional neural network (ConvNet) based on the architecture of AlexNet is built to predict the continuous phase distribution on reflectarray elements given the beam pattern. The proposed ConvNet is sufficiently trained with data set generated by array-theory method. With radiation pattern and beam direction arrays as input, the ConvNet can make real-time and fairly accurate predictions in milliseconds with the average relative error below 0.7%. This paper shows that deep convolutional neural networks can “learn” the principle of reflectarray phase synthesis due to their inherent powerful learning capacity. The proposed approach may provide us a potential scheme for real-time phase synthesis of antenna arrays in electromagnetic engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习技术的波束扫描反射天线相位合成
在这项工作中,我们研究了将深度学习应用于反射天线相位合成的可行性。建立了基于AlexNet架构的深度卷积神经网络(ConvNet)来预测给定波束模式下反射元上的连续相位分布。利用阵列理论生成的数据集对所提出的卷积神经网络进行了充分的训练。以辐射方向和波束方向阵列为输入,ConvNet可以在毫秒内做出实时且相当准确的预测,平均相对误差低于0.7%。本文表明,深度卷积神经网络由于其固有的强大学习能力,可以“学习”反射相位合成的原理。该方法为电磁工程中天线阵的实时相位合成提供了一种可行的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Associations between participation and personal factors in community-dwelling adults post-stroke. Transverse Orbital Angular Momentum of Spatiotemporal Optical Vortices Systemically Delivered, Deep-tissue Nanoscopic Light Sources Optical Neural Networks for Holographic Image Recognition (Invited Paper) Exceptional Ring by Non-Hermitian Sonic Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1