{"title":"Comparative studies of the discharge of hydronium ions on zinc, copper and aluminum cathodes","authors":"A. Kolesnikov, E. Ageenko","doi":"10.17073/0021-3438-2022-6-22-31","DOIUrl":null,"url":null,"abstract":"Electrochemical reduction of hydrogen (hydronium ion) was carried out on zinc, aluminum and copper cathodes from acidic aqueous solutions containing sulfuric acid (0.09, 0.18 and 0.36 mol/l) to study the effect of electrolyte acidity, the type of cathodes used and potential values on electrolysis indicators. The studies were carried out on the potentiostat using a three-electrode cell under conditions of intensive electrolyte stirring with a magnetic stirrer. At the initial stage, electrolysis was performed in the following modes: potentiodynamic measurements at a sweep rate of 1 mV/s in the potential range Е = –(700÷850) mV on a copper and aluminum electrode and Е = –(1000÷1150) mV on a zinc electrode. In the indicated potential range, hydronium discharge parameters at each cathode were calculated: Tafel slope, apparent transfer coefficients and exchange currents. Dependences of these parameters on electrolyte acidity were considered. Average values of steady state potentials were obtained, which, similar to the apparent exchange current, significantly depended on the cathode material: –923.1 mV (zinc cathode); +36.1 mV (copper cathode), and –603.7 mV (aluminum cathode) (AgCl/Ag). The effect of surfactants on all the kinetic parameters considered was shown. The order of the reaction with and without surfactant additives was determined. At the next stage, the electrochemical parameters of hydronium discharge on the copper electrode only were compared. It was shown that the electrochemical parameters significantly depend on the cathodic potential range where they are determined, and on the methods used for their calculation. It was noted that the process proceeds in the region of mixed kinetics. As the electrode polarization decreases, the hydrogen discharge mechanism changes, while the proportion of electrochemical kinetics will increase in the region of mixed kinetics. We suppose that the data obtained can also be of practical importance for the zinc electrolysis technology. The data obtained in this research on the electrochemical parameters of hydrogen discharge in a wide range of potentials on cathodes made of different metals as well as on the effect of electrolyte acidity on the behavior of surfactants during electrolysis will expand knowledge about the zinc electrolysis technology.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17073/0021-3438-2022-6-22-31","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical reduction of hydrogen (hydronium ion) was carried out on zinc, aluminum and copper cathodes from acidic aqueous solutions containing sulfuric acid (0.09, 0.18 and 0.36 mol/l) to study the effect of electrolyte acidity, the type of cathodes used and potential values on electrolysis indicators. The studies were carried out on the potentiostat using a three-electrode cell under conditions of intensive electrolyte stirring with a magnetic stirrer. At the initial stage, electrolysis was performed in the following modes: potentiodynamic measurements at a sweep rate of 1 mV/s in the potential range Е = –(700÷850) mV on a copper and aluminum electrode and Е = –(1000÷1150) mV on a zinc electrode. In the indicated potential range, hydronium discharge parameters at each cathode were calculated: Tafel slope, apparent transfer coefficients and exchange currents. Dependences of these parameters on electrolyte acidity were considered. Average values of steady state potentials were obtained, which, similar to the apparent exchange current, significantly depended on the cathode material: –923.1 mV (zinc cathode); +36.1 mV (copper cathode), and –603.7 mV (aluminum cathode) (AgCl/Ag). The effect of surfactants on all the kinetic parameters considered was shown. The order of the reaction with and without surfactant additives was determined. At the next stage, the electrochemical parameters of hydronium discharge on the copper electrode only were compared. It was shown that the electrochemical parameters significantly depend on the cathodic potential range where they are determined, and on the methods used for their calculation. It was noted that the process proceeds in the region of mixed kinetics. As the electrode polarization decreases, the hydrogen discharge mechanism changes, while the proportion of electrochemical kinetics will increase in the region of mixed kinetics. We suppose that the data obtained can also be of practical importance for the zinc electrolysis technology. The data obtained in this research on the electrochemical parameters of hydrogen discharge in a wide range of potentials on cathodes made of different metals as well as on the effect of electrolyte acidity on the behavior of surfactants during electrolysis will expand knowledge about the zinc electrolysis technology.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.