DELINEATION OF HYDROCARBON SATURATED RESERVOIR SAND USING INTEGRATED 3D PRE-STACK SEISMIC AND WELL LOG DATA IN BONGA – FIELD, CENTRAL SWAMP DEPOBELT, ONSHORE NIGER DELTA, NIGERIA
{"title":"DELINEATION OF HYDROCARBON SATURATED RESERVOIR SAND USING INTEGRATED 3D PRE-STACK SEISMIC AND WELL LOG DATA IN BONGA – FIELD, CENTRAL SWAMP DEPOBELT, ONSHORE NIGER DELTA, NIGERIA","authors":"Innocent Kiani, Aniefiok Sylvester Akpan","doi":"10.26480/mjg.02.2021.64.68","DOIUrl":null,"url":null,"abstract":"This study has successfully delineated the lateral continuity of hydrocarbon saturated sand reservoir in Bonga field, Niger Delta. 3D pre-stack seismic volume and well logs from two (2) exploratory wells were employed in the pre-stack seismic inversion analysis. The delineated BGA reservoir sand spans across the two (2) wells labelled Bonga-26 and Bonga-30. The reservoir depth ranges from 10490 ft to 10620 ft in Bonga-26 while the reservoir depth ranges from 10390 ft to 10490 ft in Bonga-30. The delineated reservoir is characterized by low gamma ray (< 75 API), water saturation, shale volume and high resistivity as deciphered in their respective well log curves signature. Rock attribute crossplot was carried out to discriminate between the formation fluid and lithology. The crossplot space of VP-VS ratio versus acoustic impedance (AI), discriminates the formation properties into lithology and fluid (gas and brine sand) based on clusters inferring the presence of each formation fluid properties. The inversion cross sections of P-impedance, S-impedance, density (ρ) and VP-VS ratio depicts the spread and lateral continuity of the reservoir sand across the well locations. The delineated zones reveal low P-impedance, density, VP-VS ratio and slight increase in S-impedance which further validate the presence of hydrocarbon in the field.","PeriodicalId":53054,"journal":{"name":"Malaysian Journal of Geosciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/mjg.02.2021.64.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study has successfully delineated the lateral continuity of hydrocarbon saturated sand reservoir in Bonga field, Niger Delta. 3D pre-stack seismic volume and well logs from two (2) exploratory wells were employed in the pre-stack seismic inversion analysis. The delineated BGA reservoir sand spans across the two (2) wells labelled Bonga-26 and Bonga-30. The reservoir depth ranges from 10490 ft to 10620 ft in Bonga-26 while the reservoir depth ranges from 10390 ft to 10490 ft in Bonga-30. The delineated reservoir is characterized by low gamma ray (< 75 API), water saturation, shale volume and high resistivity as deciphered in their respective well log curves signature. Rock attribute crossplot was carried out to discriminate between the formation fluid and lithology. The crossplot space of VP-VS ratio versus acoustic impedance (AI), discriminates the formation properties into lithology and fluid (gas and brine sand) based on clusters inferring the presence of each formation fluid properties. The inversion cross sections of P-impedance, S-impedance, density (ρ) and VP-VS ratio depicts the spread and lateral continuity of the reservoir sand across the well locations. The delineated zones reveal low P-impedance, density, VP-VS ratio and slight increase in S-impedance which further validate the presence of hydrocarbon in the field.