{"title":"Parameter space dimension reduction of an adaptive interpolator during multidimensional signal differential compression","authors":"A. Maksimov, M. Gashnikov","doi":"10.18287/1613-0073-2019-2391-23-30","DOIUrl":null,"url":null,"abstract":"We propose a new adaptive multidimensional signal interpolator for differential compression tasks. To increase the efficiency of interpolation, we optimize its parameters space by the minimum absolute interpolation error criterion. To reduce the complexity of interpolation optimization, we reduce the dimension of its parameter range. The correspondence between signal samples in a local neighbourhood is parameterized. Besides, we compare several methods for such parameterization. The developed adaptive interpolator is embedded in the differential compression method. Computational experiments on real multidimensional signals confirm that the use of the proposed interpolator can increase the compression ratio.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-23-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new adaptive multidimensional signal interpolator for differential compression tasks. To increase the efficiency of interpolation, we optimize its parameters space by the minimum absolute interpolation error criterion. To reduce the complexity of interpolation optimization, we reduce the dimension of its parameter range. The correspondence between signal samples in a local neighbourhood is parameterized. Besides, we compare several methods for such parameterization. The developed adaptive interpolator is embedded in the differential compression method. Computational experiments on real multidimensional signals confirm that the use of the proposed interpolator can increase the compression ratio.