Solving Geophysical Inversion Problems with Intractable Likelihoods: Linearized Gaussian Approximations Versus the Correlated Pseudo-marginal Method.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-01 Epub Date: 2023-06-02 DOI:10.1007/s11004-023-10064-y
Lea Friedli, Niklas Linde
{"title":"Solving Geophysical Inversion Problems with Intractable Likelihoods: Linearized Gaussian Approximations Versus the Correlated Pseudo-marginal Method.","authors":"Lea Friedli, Niklas Linde","doi":"10.1007/s11004-023-10064-y","DOIUrl":null,"url":null,"abstract":"<p><p>A geophysical Bayesian inversion problem may target the posterior distribution of geological or hydrogeological parameters given geophysical data. To account for the scatter in the petrophysical relationship linking the target parameters to the geophysical properties, this study treats the intermediate geophysical properties as latent (unobservable) variables. To perform inversion in such a latent variable model, the intractable likelihood function of the (hydro)geological parameters given the geophysical data needs to be estimated. This can be achieved by approximation with a Gaussian probability density function based on local linearization of the geophysical forward operator, thereby, accounting for the noise in the petrophysical relationship by a corresponding addition to the data covariance matrix. The new approximate method is compared against the general correlated pseudo-marginal method, which estimates the likelihood by Monte Carlo averaging over samples of the latent variable. First, the performances of the two methods are tested on a synthetic test example, in which a multivariate Gaussian porosity field is inferred using crosshole ground-penetrating radar first-arrival travel times. For this example with rather small petrophysical uncertainty, the two methods provide near-identical estimates, while an inversion that ignores petrophysical uncertainty leads to biased estimates. The results of a sensitivity analysis are then used to suggest that the linearized Gaussian approach, while attractive due to its relative computational speed, suffers from a decreasing accuracy with increasing scatter in the petrophysical relationship. The computationally more expensive correlated pseudo-marginal method performs very well even for settings with high petrophysical uncertainty.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10064-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A geophysical Bayesian inversion problem may target the posterior distribution of geological or hydrogeological parameters given geophysical data. To account for the scatter in the petrophysical relationship linking the target parameters to the geophysical properties, this study treats the intermediate geophysical properties as latent (unobservable) variables. To perform inversion in such a latent variable model, the intractable likelihood function of the (hydro)geological parameters given the geophysical data needs to be estimated. This can be achieved by approximation with a Gaussian probability density function based on local linearization of the geophysical forward operator, thereby, accounting for the noise in the petrophysical relationship by a corresponding addition to the data covariance matrix. The new approximate method is compared against the general correlated pseudo-marginal method, which estimates the likelihood by Monte Carlo averaging over samples of the latent variable. First, the performances of the two methods are tested on a synthetic test example, in which a multivariate Gaussian porosity field is inferred using crosshole ground-penetrating radar first-arrival travel times. For this example with rather small petrophysical uncertainty, the two methods provide near-identical estimates, while an inversion that ignores petrophysical uncertainty leads to biased estimates. The results of a sensitivity analysis are then used to suggest that the linearized Gaussian approach, while attractive due to its relative computational speed, suffers from a decreasing accuracy with increasing scatter in the petrophysical relationship. The computationally more expensive correlated pseudo-marginal method performs very well even for settings with high petrophysical uncertainty.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决具有难解似然的地球物理反演问题:线性化高斯逼近法与相关伪边际法的比较。
地球物理贝叶斯反演问题的目标可能是给定地球物理数据的地质或水文地质参数的后验分布。为了考虑目标参数与地球物理属性之间岩石物理关系的分散性,本研究将中间地球物理属性视为潜变量(不可观测)。要在这种潜变量模型中进行反演,需要对给定地球物理数据的(水文)地质参数的难解似然函数进行估计。这可以通过基于地球物理前向算子局部线性化的高斯概率密度函数近似来实现,从而通过相应增加数据协方差矩阵来考虑岩石物理关系中的噪声。新的近似方法与一般的相关伪边际方法进行了比较,后者通过蒙特卡洛平均潜变量样本来估计似然。首先,在一个合成测试实例中测试了两种方法的性能,在该实例中,利用跨孔探地雷达的首次到达时间推断了多元高斯孔隙度场。对于这个岩石物理不确定性相当小的例子,两种方法提供的估算值几乎相同,而忽略岩石物理不确定性的反演则会导致估算值偏差。敏感性分析的结果表明,线性化高斯方法虽然因其计算速度相对较快而具有吸引力,但随着岩石物理关系散度的增加,其准确性也在下降。而计算成本较高的相关伪边际方法即使在岩石物理不确定性较高的情况下也表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1