On dynamic pricing under model uncertainty

Xiao-hai Zhu, Xueqing Sun
{"title":"On dynamic pricing under model uncertainty","authors":"Xiao-hai Zhu, Xueqing Sun","doi":"10.1002/nav.22054","DOIUrl":null,"url":null,"abstract":"We formulate and solve a robust dynamic pricing problem for an ambiguity‐averse agent who faces an uncertain probabilistic law governing the realized demand for a single product. Specifically, the pricing problem is framed as a stochastic game that involves a maximizing player (the “agent”) and a minimizing player (“nature”) who promotes robustness by distorting the agent's beliefs within prescribed limits. Our methodology builds on the commonly used entropic approach in the literature but can be utilized to generate a much more versatile class of uncertainty sets. We derive the optimal pricing strategy and the corresponding value function by applying stochastic dynamic programming and solving a version of the Bellman–Isaacs equation. The usefulness of our framework is illustrated by two special cases. Finally, a carefully designed numerical example exposes the value of model robustness.","PeriodicalId":19120,"journal":{"name":"Naval Research Logistics (NRL)","volume":"13 1","pages":"856 - 868"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics (NRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nav.22054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We formulate and solve a robust dynamic pricing problem for an ambiguity‐averse agent who faces an uncertain probabilistic law governing the realized demand for a single product. Specifically, the pricing problem is framed as a stochastic game that involves a maximizing player (the “agent”) and a minimizing player (“nature”) who promotes robustness by distorting the agent's beliefs within prescribed limits. Our methodology builds on the commonly used entropic approach in the literature but can be utilized to generate a much more versatile class of uncertainty sets. We derive the optimal pricing strategy and the corresponding value function by applying stochastic dynamic programming and solving a version of the Bellman–Isaacs equation. The usefulness of our framework is illustrated by two special cases. Finally, a carefully designed numerical example exposes the value of model robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型不确定性下的动态定价研究
我们提出并解决了一个不确定性规避代理的鲁棒动态定价问题,该代理面临控制单个产品实现需求的不确定概率律。具体来说,定价问题被框定为一个随机博弈,其中涉及一个最大化的参与者(“代理”)和一个最小化的参与者(“自然”),后者通过在规定的范围内扭曲代理的信念来提高鲁棒性。我们的方法建立在文献中常用的熵方法的基础上,但可以用来生成更通用的不确定性集。利用随机动态规划方法,通过求解Bellman-Isaacs方程,推导出最优定价策略和相应的价值函数。我们的框架的有用性通过两个特殊案例来说明。最后,通过一个精心设计的数值算例揭示了模型鲁棒性的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assigning parcel destinations to drop‐off points in a congested robotic sorting system An optimization‐based Monte Carlo method for estimating the two‐terminal survival signature of networks with two component classes A two‐stage adaptive robust model for designing a reliable blood supply chain network with disruption considerations in disaster situations Firm decisions and government subsidies in a supply chain with consumer surplus consideration Optimal emission regulation under market uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1