C. Walsh, S. Rondineau, M. Jankovic, George Zhao, Z. Popovic
{"title":"A Conformal 10 GHz Rectenna for Wireless Powering of Piezoelectric Sensor Electronics","authors":"C. Walsh, S. Rondineau, M. Jankovic, George Zhao, Z. Popovic","doi":"10.1109/MWSYM.2005.1516543","DOIUrl":null,"url":null,"abstract":"This paper presents the design, implementation and characterization of a rectenna array for wireless powering of sensor electronics for airframe fatigue detection. The rectenna aperture is powered 5 minutes at a time during inspection with a requirement of ±15V at 100mW. The maximum incident RF power is 10mW/cm2. A single rectenna element at this incident power density has an output power of 5 mW and an estimated efficiency of 50%. Each of the 25 antenna elements has an integrated rectifier, the outputs of which are combined in series to achieve the total required voltage and power at an estimated efficiency of 40%.","PeriodicalId":13133,"journal":{"name":"IEEE MTT-S International Microwave Symposium Digest, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MTT-S International Microwave Symposium Digest, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2005.1516543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
This paper presents the design, implementation and characterization of a rectenna array for wireless powering of sensor electronics for airframe fatigue detection. The rectenna aperture is powered 5 minutes at a time during inspection with a requirement of ±15V at 100mW. The maximum incident RF power is 10mW/cm2. A single rectenna element at this incident power density has an output power of 5 mW and an estimated efficiency of 50%. Each of the 25 antenna elements has an integrated rectifier, the outputs of which are combined in series to achieve the total required voltage and power at an estimated efficiency of 40%.