Breaking Wave Hazard Estimation Model for the U.S. Atlantic Coast

Spencer T Hallowell, S. Arwade, C. Qiao, A. Myers, W. Pang
{"title":"Breaking Wave Hazard Estimation Model for the U.S. Atlantic Coast","authors":"Spencer T Hallowell, S. Arwade, C. Qiao, A. Myers, W. Pang","doi":"10.1115/1.4051161","DOIUrl":null,"url":null,"abstract":"\n As offshore wind development is in its infancy along the U.S. Atlantic Coast challenges arise due to the effects of strong storms such as hurricanes. Breaking waves on offshore structures induced by hurricanes are of particular concern to offshore structures due to high magnitude impulse loads caused by wave slamming. Prediction of breaking wave hazards is important in offshore design for load cases using long mean return periods of environmental conditions. A breaking wave hazard estimation model (BWHEM) is introduced that provides a means for assessing breaking hazard at long mean return periods over a large domain along the U.S. Atlantic Coast. The BWHEM combines commonly used breaking criteria with the Inverse First Order Method of producing environmental contours and is applied in a numerical study using a catalog of stochastic hurricanes. The result of the study shows that breaking wave hazard estimation is highly sensitive to the breaking criteria chosen. Criteria including wave steepness and seafloor slope were found to predict breaking conditions at shorter return periods than criteria with only wave height and water depth taken into consideration. Breaking hazard was found to be most important for locations closer to the coast, where breaking was predicted to occur at lower mean return periods than locations further offshore.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

As offshore wind development is in its infancy along the U.S. Atlantic Coast challenges arise due to the effects of strong storms such as hurricanes. Breaking waves on offshore structures induced by hurricanes are of particular concern to offshore structures due to high magnitude impulse loads caused by wave slamming. Prediction of breaking wave hazards is important in offshore design for load cases using long mean return periods of environmental conditions. A breaking wave hazard estimation model (BWHEM) is introduced that provides a means for assessing breaking hazard at long mean return periods over a large domain along the U.S. Atlantic Coast. The BWHEM combines commonly used breaking criteria with the Inverse First Order Method of producing environmental contours and is applied in a numerical study using a catalog of stochastic hurricanes. The result of the study shows that breaking wave hazard estimation is highly sensitive to the breaking criteria chosen. Criteria including wave steepness and seafloor slope were found to predict breaking conditions at shorter return periods than criteria with only wave height and water depth taken into consideration. Breaking hazard was found to be most important for locations closer to the coast, where breaking was predicted to occur at lower mean return periods than locations further offshore.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国大西洋沿岸破碎波危害评估模型
由于美国大西洋沿岸的海上风电开发处于起步阶段,由于飓风等强风暴的影响,挑战也随之而来。由于海浪撞击引起的高震级冲击载荷,飓风对海上结构的破碎波是海上结构特别关注的问题。对于使用长平均返回周期环境条件的负荷情况,破碎波危险的预测在海上设计中是重要的。介绍了一种破碎波危险性估计模型(BWHEM),该模型为美国大西洋沿岸大范围海域的长平均回归期破碎危险性评估提供了一种方法。BWHEM将常用的破坏准则与生成环境等高线的逆一阶方法相结合,并应用于随机飓风目录的数值研究。研究结果表明,破碎波危害评估对所选择的破碎准则高度敏感。与只考虑浪高和水深的准则相比,包括波浪陡度和海底坡度在内的准则在较短的回归周期内预测破裂情况。发现破碎危险对靠近海岸的地方最重要,预计破碎发生的平均回归期比离岸更远的地方要短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
期刊最新文献
Verification and Validation of Rotating Machinery Using Digital Twin Risk Approach Based On the Fram Model for Vessel Traffic Management A Fault Detection Framework Based On Data-driven Digital Shadows Domain Adaptation Of Population-Based Of Bolted Joint Structures For Loss Detection Of Tightening Torque Human-Comfort Evaluation for A Patient-Transfer Robot through A Human-Robot Mechanical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1