Source Separation of the Second Heart Sound Using Gaussian Mixture Models

Renna Francesco, Coimbra Miguel
{"title":"Source Separation of the Second Heart Sound Using Gaussian Mixture Models","authors":"Renna Francesco, Coimbra Miguel","doi":"10.22489/cinc.2019.236","DOIUrl":null,"url":null,"abstract":"In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2019.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高斯混合模型分离第二心音
在这项工作中,我们提出了一种从第二心音(S2)中分离主动脉(A2)和肺动脉(P2)成分的方法。该方法通过联合高斯混合模型捕获A2和P2组分的不同动态行为,然后通过封闭形式条件平均估计器进行分离。所提出的方法在合成心音上进行了测试,结果表明,与文献中先前提出的方法相比,它可以保证将信号分离中产生的归一化均方根误差减少约25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Reducing the Number of Leads from Body Surface Potential Mapping in Computer Models of Atrial Arrhythmias Autonomic Nervous System Response to Heat Stress Exposure by Means of Heart Rate Variability Automatic Emotions Assessment Using Heart Rate Variability Analysis and 2D Regression Model of Emotions A New Graphical Method for Reporting Performance Results of a Diagnostic Test A Low Dimensional Algorithm for Detection of Sepsis from Electronic Medical Record Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1