首页 > 最新文献

2019 Computing in Cardiology Conference (CinC)最新文献

英文 中文
Calcium-Activated Potassium Channel Inhibition in Autonomically Stimulated Human Atrial Myocytes. 自主刺激心房肌细胞的钙活化钾通道抑制。
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.334
Chiara Celotto, C. Sánchez, P. Laguna, E. Pueyo
{"title":"Calcium-Activated Potassium Channel Inhibition in Autonomically Stimulated Human Atrial Myocytes.","authors":"Chiara Celotto, C. Sánchez, P. Laguna, E. Pueyo","doi":"10.22489/cinc.2019.334","DOIUrl":"https://doi.org/10.22489/cinc.2019.334","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"60 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77910986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Representation Learning for Early Sepsis Prediction 表征学习用于脓毒症早期预测
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.021
T. Luan, N. Manh, Shahabi Cyrus
As part of the PhysioNet/Computing in Cardiology Challenge 2019, we propose a neural network called AECNet to early detect sepsis based on physiological data. AEC-Net consists of two main components: 1) an Auto Encoder for dimension reduction and feature extraction, and 2) a Fully Connected Neural Network (FCNN) taking the extracted features by the Auto Encoder as the input and generating prediction of sepsis as output. The losses of both the Auto Encoder and FCNN are minimized concurrently. This concurrent optimization helps AEC-Net to have a better generalization and the extracted features by Auto Encoder to be more relevant to the classification problem. Finally, we propose an ensemble method of AECNet, Random Forest and Gradient Boosting Decision Trees to achieve a better prediction. We train our proposed models using data from 40336 patients with 40 physiological features ranging from 8 to 336 hours. Our team Infolab USC evaluated Ensemble with the hidden full test set of the Physionet Challenge 2019, and achieved a Utility score of 0.284 and 24 place in the challenge.
作为2019年PhysioNet/Computing in Cardiology Challenge的一部分,我们提出了一个名为AECNet的神经网络,根据生理数据早期检测败血症。AEC-Net主要由两个部分组成:1)用于降维和特征提取的Auto Encoder; 2)以Auto Encoder提取的特征作为输入,生成脓毒症预测作为输出的Fully Connected Neural Network (FCNN)。同时最小化了自动编码器和FCNN的损耗。这种并行优化有助于AEC-Net具有更好的泛化性,并且Auto Encoder提取的特征与分类问题更加相关。最后,我们提出了一种AECNet、随机森林和梯度增强决策树的集成方法来实现更好的预测。我们使用40336例患者的数据来训练我们提出的模型,这些患者具有40种生理特征,时间从8到336小时不等。我们的团队Infolab USC使用Physionet Challenge 2019的隐藏完整测试集对Ensemble进行了评估,并在挑战中获得了0.284的效用分数和24位。
{"title":"Representation Learning for Early Sepsis Prediction","authors":"T. Luan, N. Manh, Shahabi Cyrus","doi":"10.22489/cinc.2019.021","DOIUrl":"https://doi.org/10.22489/cinc.2019.021","url":null,"abstract":"As part of the PhysioNet/Computing in Cardiology Challenge 2019, we propose a neural network called AECNet to early detect sepsis based on physiological data. AEC-Net consists of two main components: 1) an Auto Encoder for dimension reduction and feature extraction, and 2) a Fully Connected Neural Network (FCNN) taking the extracted features by the Auto Encoder as the input and generating prediction of sepsis as output. The losses of both the Auto Encoder and FCNN are minimized concurrently. This concurrent optimization helps AEC-Net to have a better generalization and the extracted features by Auto Encoder to be more relevant to the classification problem. Finally, we propose an ensemble method of AECNet, Random Forest and Gradient Boosting Decision Trees to achieve a better prediction. We train our proposed models using data from 40336 patients with 40 physiological features ranging from 8 to 336 hours. Our team Infolab USC evaluated Ensemble with the hidden full test set of the Physionet Challenge 2019, and achieved a Utility score of 0.284 and 24 place in the challenge.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85095606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Pressure and Flow Interplay in Aortic Dilation Using 4D Flow Magnetic Resonance Imaging 利用四维血流磁共振成像研究主动脉扩张中压力和血流的相互作用
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.058
Bouaou Kevin, Bollache Emilie, L. Didier, Mousseaux Élie, Kachenoura Nadjia, D. Thomas, Soulat Gilles, Houriez-Gombaud-Saintonge Sophia, Bargiotas Ioannis, De Cesare Alain, G. Umit, Giron Alain, Redheuil Alban
Ascending thoracic aortic aneurysms (ATAA) are defined by a silent dilation of the ascending aorta (AA). Although maximal aortic diameter is currently used for surgery planning, a high proportion of patients with low diameters ending up with aortic dissection. Our purpose was to propose a fine and comprehensive quantitative evaluation of pressure-flow-wall interplay from 4D flow MRI data in the setting of aortic dilation. We studied 12 patients with ATAA (67±14 years, 7 male) and 12 healthy subjects (63±12 years, 8 male) who underwent 4D flow MRI acquisition. The segmented velocity fields were used to estimate: 1) local AA pressure changes from Navier-Stokes-derived relative pressure maps (AADP), 2) AA wall shear stress (AAWSS) by estimating local velocity derivatives at the aortic borders, 3) aortic flow vorticity using the λ2 method (AAV). AADP was significantly and positively associated with both AAV (r=0.55, p=0.006) and AAWSS (r=0.69 p<0.001). Such associations remained significant after adjustment for maximal diameter, age and BSA. Local variations in pressures within the aorta, rendered possible while using 4D flow MRI, are associated with flow disorganization as quantified by vorticity and with the increase in the stress exerted on the aortic wall, as quantified by wall shear stress.
胸升主动脉瘤(ATAA)被定义为无症状的升主动脉扩张(AA)。虽然目前使用最大主动脉直径作为手术计划,但很大比例的低直径患者最终发生主动脉夹层。我们的目的是在主动脉扩张的情况下,从4D血流MRI数据中提出一种精细而全面的压力-流-壁相互作用的定量评估。我们对12例ATAA患者(67±14岁,7名男性)和12名健康受试者(63±12岁,8名男性)进行了4D血流MRI采集。采用分段速度场估计:1)由navier - stokes推导的相对压力图(AADP)估计局部AA压力变化;2)通过估计主动脉边界的局部速度导数估计AA壁剪应力(AAWSS); 3)用λ2法(AAV)估计主动脉流涡度。AADP与AAV (r=0.55, p=0.006)和AAWSS (r=0.69, p<0.001)呈正相关。在调整最大直径、年龄和BSA后,这种关联仍然显著。在使用4D血流MRI时,主动脉内的局部压力变化可能与通过涡度量化的血流紊乱和通过壁剪切应力量化的施加在主动脉壁上的应力增加有关。
{"title":"Pressure and Flow Interplay in Aortic Dilation Using 4D Flow Magnetic Resonance Imaging","authors":"Bouaou Kevin, Bollache Emilie, L. Didier, Mousseaux Élie, Kachenoura Nadjia, D. Thomas, Soulat Gilles, Houriez-Gombaud-Saintonge Sophia, Bargiotas Ioannis, De Cesare Alain, G. Umit, Giron Alain, Redheuil Alban","doi":"10.22489/cinc.2019.058","DOIUrl":"https://doi.org/10.22489/cinc.2019.058","url":null,"abstract":"Ascending thoracic aortic aneurysms (ATAA) are defined by a silent dilation of the ascending aorta (AA). Although maximal aortic diameter is currently used for surgery planning, a high proportion of patients with low diameters ending up with aortic dissection. Our purpose was to propose a fine and comprehensive quantitative evaluation of pressure-flow-wall interplay from 4D flow MRI data in the setting of aortic dilation. We studied 12 patients with ATAA (67±14 years, 7 male) and 12 healthy subjects (63±12 years, 8 male) who underwent 4D flow MRI acquisition. The segmented velocity fields were used to estimate: 1) local AA pressure changes from Navier-Stokes-derived relative pressure maps (AADP), 2) AA wall shear stress (AAWSS) by estimating local velocity derivatives at the aortic borders, 3) aortic flow vorticity using the λ2 method (AAV). AADP was significantly and positively associated with both AAV (r=0.55, p=0.006) and AAWSS (r=0.69 p<0.001). Such associations remained significant after adjustment for maximal diameter, age and BSA. Local variations in pressures within the aorta, rendered possible while using 4D flow MRI, are associated with flow disorganization as quantified by vorticity and with the increase in the stress exerted on the aortic wall, as quantified by wall shear stress.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90680657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Investigating the Optimal Recording Duration for Summarising Spatiotemporal Behaviours of Long Lifespan Rotors Using Phase Mapping of Non-Contact Electrograms During Persistent Atrial Fibrillation’’ “研究在持续性房颤期间使用非接触电图的相位映射来总结长寿命转子的时空行为的最佳记录时间”
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.149
Mahmoud Ehnesh, Xin Li, N. Dastagir, Saaima Ahmad, T. Biala, P. J. Stafford, G. André Ng, F. Schlindwein
{"title":"“Investigating the Optimal Recording Duration for Summarising Spatiotemporal Behaviours of Long Lifespan Rotors Using Phase Mapping of Non-Contact Electrograms During Persistent Atrial Fibrillation’’","authors":"Mahmoud Ehnesh, Xin Li, N. Dastagir, Saaima Ahmad, T. Biala, P. J. Stafford, G. André Ng, F. Schlindwein","doi":"10.22489/cinc.2019.149","DOIUrl":"https://doi.org/10.22489/cinc.2019.149","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82983538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atherosclerotic Plaques Recognition in Intracoronary Optical Images Using Neural Networks 利用神经网络识别冠状动脉内光学图像中的动脉粥样硬化斑块
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.387
Maysa M. G. Macedo, Dario AB Oliveira, Marco Antonio Gutierrez
{"title":"Atherosclerotic Plaques Recognition in Intracoronary Optical Images Using Neural Networks","authors":"Maysa M. G. Macedo, Dario AB Oliveira, Marco Antonio Gutierrez","doi":"10.22489/cinc.2019.387","DOIUrl":"https://doi.org/10.22489/cinc.2019.387","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78421602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-feature Probabilistic Detector Applied on Apnea/hypopnea Monitoring 多特征概率检测器在呼吸暂停/低呼吸监测中的应用
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.394
G. Di, Alfredo I. Hernández
{"title":"Multi-feature Probabilistic Detector Applied on Apnea/hypopnea Monitoring","authors":"G. Di, Alfredo I. Hernández","doi":"10.22489/cinc.2019.394","DOIUrl":"https://doi.org/10.22489/cinc.2019.394","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78462633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Reducing the Number of Leads from Body Surface Potential Mapping in Computer Models of Atrial Arrhythmias 减少体表电位映射导联数对心房心律失常计算机模型的影响
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.099
V. Gonçalves Marques, M. Rodrigo, Maria de la Salud Guillem Sánchez", J. Salinet
{"title":"Effects of Reducing the Number of Leads from Body Surface Potential Mapping in Computer Models of Atrial Arrhythmias","authors":"V. Gonçalves Marques, M. Rodrigo, Maria de la Salud Guillem Sánchez\", J. Salinet","doi":"10.22489/cinc.2019.099","DOIUrl":"https://doi.org/10.22489/cinc.2019.099","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72895597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source Separation of the Second Heart Sound Using Gaussian Mixture Models 利用高斯混合模型分离第二心音
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.236
Renna Francesco, Coimbra Miguel
In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.
在这项工作中,我们提出了一种从第二心音(S2)中分离主动脉(A2)和肺动脉(P2)成分的方法。该方法通过联合高斯混合模型捕获A2和P2组分的不同动态行为,然后通过封闭形式条件平均估计器进行分离。所提出的方法在合成心音上进行了测试,结果表明,与文献中先前提出的方法相比,它可以保证将信号分离中产生的归一化均方根误差减少约25%。
{"title":"Source Separation of the Second Heart Sound Using Gaussian Mixture Models","authors":"Renna Francesco, Coimbra Miguel","doi":"10.22489/cinc.2019.236","DOIUrl":"https://doi.org/10.22489/cinc.2019.236","url":null,"abstract":"In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79633600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Towards Detailed Real-Time Simulations of Cardiac Arrhythmia 心律失常的详细实时模拟
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.301
Langguth Johannes, Arevalo Hermenegild, H. Gregorius, Cai Xing
{"title":"Towards Detailed Real-Time Simulations of Cardiac Arrhythmia","authors":"Langguth Johannes, Arevalo Hermenegild, H. Gregorius, Cai Xing","doi":"10.22489/cinc.2019.301","DOIUrl":"https://doi.org/10.22489/cinc.2019.301","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87988907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Investigation of the CACNA1C N2091S Mutation in Timothy Syndrome 蒂莫西综合征CACNA1C N2091S突变的计算机研究
Pub Date : 2019-12-30 DOI: 10.22489/cinc.2019.003
Bai Jieyun, Lu Yaosheng, S. Tao, Wang Kuanquan, Zhang Henggui
{"title":"In Silico Investigation of the CACNA1C N2091S Mutation in Timothy Syndrome","authors":"Bai Jieyun, Lu Yaosheng, S. Tao, Wang Kuanquan, Zhang Henggui","doi":"10.22489/cinc.2019.003","DOIUrl":"https://doi.org/10.22489/cinc.2019.003","url":null,"abstract":"","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79247497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2019 Computing in Cardiology Conference (CinC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1