Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers

Samah Ali Al-azani , C. Namrata Mahender , Mohammed Hasan
{"title":"Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers","authors":"Samah Ali Al-azani ,&nbsp;C. Namrata Mahender ,&nbsp;Mohammed Hasan","doi":"10.1016/j.gltp.2022.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Many traditional question answering systems depend on an Automatic Short Answer Grading (ASAG) to evaluate misspelled multiple words short answers in an Arabic Language using common edit-based algorithms such as Hamming, Levenshtein, and Jaro_Winkler, but they ignore and hide a big amount of a significant knowledge of the student answer. In this paper, we have implemented a proposed edit-based Hierarchical question answering system (HQAS) using a traversing by Breadth-First Search (BFS) within an m-ary tree to consider the ignored significant knowledge due to the misspelling at the middle of the dual-ordered incomplete answer, the misspelling at middle and the end of the intra-ordered incomplete answer, and the misspelling due to switching in words of the intra-ordered complete answer. It can differentiate among the students based on their significant hidden knowledge and show a distribution of knowledge content on different depths of the topic to determine which of the topic depths the student has the most significant knowledge.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 2","pages":"Pages 376-385"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X22000760/pdfft?md5=cd0780493798a30cd1cdc69eb33b2635&pid=1-s2.0-S2666285X22000760-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X22000760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many traditional question answering systems depend on an Automatic Short Answer Grading (ASAG) to evaluate misspelled multiple words short answers in an Arabic Language using common edit-based algorithms such as Hamming, Levenshtein, and Jaro_Winkler, but they ignore and hide a big amount of a significant knowledge of the student answer. In this paper, we have implemented a proposed edit-based Hierarchical question answering system (HQAS) using a traversing by Breadth-First Search (BFS) within an m-ary tree to consider the ignored significant knowledge due to the misspelling at the middle of the dual-ordered incomplete answer, the misspelling at middle and the end of the intra-ordered incomplete answer, and the misspelling due to switching in words of the intra-ordered complete answer. It can differentiate among the students based on their significant hidden knowledge and show a distribution of knowledge content on different depths of the topic to determine which of the topic depths the student has the most significant knowledge.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阿拉伯语hqas的考虑拼错多词简答中被忽略知识的ASAG的开发
许多传统的问答系统依赖于自动简答评分(ASAG),使用常见的基于编辑的算法(如Hamming, Levenshtein和Jaro_Winkler)来评估阿拉伯语中拼写错误的多词简答,但它们忽略并隐藏了学生答案的大量重要知识。在本文中,我们提出了一种基于编辑的分层问答系统(HQAS),该系统采用广度优先搜索(BFS)在m树内进行遍历,以考虑由于双有序不完整答案中间的拼写错误而忽略的重要知识,内部有序不完整答案的中间和结尾的拼写错误,以及由于内部有序完整答案的单词交换而导致的拼写错误。它可以根据学生的重要隐藏知识来区分学生,并显示知识内容在主题的不同深度上的分布,以确定学生在主题的哪个深度拥有最重要的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Energy Efficient Secure Routing Protocol for Mobile Ad-Hoc Network Grid interconnected H-bridge multilevel inverter for renewable power applications using repeating units and level boosting network Power Generation Using Ocean Waves: A Review Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers Smartphone assist deep neural network to detect the citrus diseases in Agri-informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1