Toward Optimal Configuration Space Sampling

B. Burns, O. Brock
{"title":"Toward Optimal Configuration Space Sampling","authors":"B. Burns, O. Brock","doi":"10.15607/RSS.2005.I.015","DOIUrl":null,"url":null,"abstract":"Efficient motion planning is obtained by focusing computation on relevant regions of configuration space. In t he following we propose a new approach to multi-query samplingbased motion planning, which exploits information obtained from earlier exploration and its current state to guide exploration. This approach attempts to minimize the selection of samples to th ose required to completely capture configuration space connect ivity. Our planner constructs an approximate model of configuration space that is used in conjunction with a utility function to select configurations with maximal expected importance giv en the planner’s current state. The resulting utility-guided planner is online and adaptive. Its behavior adjusts to the developi ng state of the motion planner and its understanding of the confi guration space. Experimental comparisons with existing planners show that this utility-guided approach significantly decreases the runtime required for motion planning.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"549 1","pages":"105-112"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

Efficient motion planning is obtained by focusing computation on relevant regions of configuration space. In t he following we propose a new approach to multi-query samplingbased motion planning, which exploits information obtained from earlier exploration and its current state to guide exploration. This approach attempts to minimize the selection of samples to th ose required to completely capture configuration space connect ivity. Our planner constructs an approximate model of configuration space that is used in conjunction with a utility function to select configurations with maximal expected importance giv en the planner’s current state. The resulting utility-guided planner is online and adaptive. Its behavior adjusts to the developi ng state of the motion planner and its understanding of the confi guration space. Experimental comparisons with existing planners show that this utility-guided approach significantly decreases the runtime required for motion planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向最优配置空间采样
通过对位形空间的相关区域进行集中计算,获得了高效的运动规划。本文提出了一种基于多查询采样的运动规划新方法,该方法利用先前探测的信息及其当前状态来指导探测。这种方法试图将样本的选择最小化到完全捕获配置空间连接性所需的样本。我们的规划器构建了一个配置空间的近似模型,该模型与效用函数结合使用,以在规划器的当前状态下选择具有最大期望重要性的配置。由此产生的实用程序引导的规划器是在线的和自适应的。它的行为与运动规划器的发展状态及其对构型空间的理解相适应。与现有规划器的实验比较表明,这种实用引导方法显著降低了运动规划所需的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1