Tritium Desorption Behavior and Microstructure Evolution of Beryllium Irradiated at Low Temperature Up to High Neutron Dose in BR2 Reactor

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-08-02 DOI:10.3390/jne4030036
V. Chakin, R. Rolli, R. Gaisin, W. Van Renterghem
{"title":"Tritium Desorption Behavior and Microstructure Evolution of Beryllium Irradiated at Low Temperature Up to High Neutron Dose in BR2 Reactor","authors":"V. Chakin, R. Rolli, R. Gaisin, W. Van Renterghem","doi":"10.3390/jne4030036","DOIUrl":null,"url":null,"abstract":"The present study investigated the release of tritium from beryllium irradiated at 323 K to a neutron fluence of 4.67 × 1026 m−2 (E > 1 MeV), corresponding up to 22,000 appm helium and 2000 appm tritium productions. The TPD tests revealed a single tritium release peak during thermal desorption tests, irrespective of the heating mode employed. The tritium release peaks occurred at temperatures ranging from 1031–1136 K, depending on the heating mode, with a desorption energy of 1.6 eV. Additionally, the effective tritium diffusion coefficient was found to vary from 1.2 × 10−12 m2/s at 873 K to 1.8 × 10−10 m2/s at 1073 K. The evolution of beryllium microstructure was found to be dependent on the annealing temperature. No discernible differences were observed between the as-received state and after annealing at 473–773 K for 5 h, with a corresponding porosity range of 1–2%. The annealing at temperatures of 873–1373 K for 5 h resulted in the formation of large bubbles, with porosity increasing sharply above 873 K and reaching 30–60%.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4030036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigated the release of tritium from beryllium irradiated at 323 K to a neutron fluence of 4.67 × 1026 m−2 (E > 1 MeV), corresponding up to 22,000 appm helium and 2000 appm tritium productions. The TPD tests revealed a single tritium release peak during thermal desorption tests, irrespective of the heating mode employed. The tritium release peaks occurred at temperatures ranging from 1031–1136 K, depending on the heating mode, with a desorption energy of 1.6 eV. Additionally, the effective tritium diffusion coefficient was found to vary from 1.2 × 10−12 m2/s at 873 K to 1.8 × 10−10 m2/s at 1073 K. The evolution of beryllium microstructure was found to be dependent on the annealing temperature. No discernible differences were observed between the as-received state and after annealing at 473–773 K for 5 h, with a corresponding porosity range of 1–2%. The annealing at temperatures of 873–1373 K for 5 h resulted in the formation of large bubbles, with porosity increasing sharply above 873 K and reaching 30–60%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温至高中子剂量辐照铍在BR2反应堆中的氚解吸行为及微观结构演变
本研究研究了铍在323 K辐照下释放氚的中子通量为4.67 × 1026 m−2 (E > 1 MeV),对应于22,000 appm氦和2000 appm氚的产量。TPD测试显示,在热脱附测试中,无论采用何种加热模式,都有一个单一的氚释放峰。氚的释放峰发生在1031-1136 K的温度范围内,取决于加热模式,解吸能为1.6 eV。此外,氚的有效扩散系数在873 K时为1.2 × 10−12 m2/s,在1073 K时为1.8 × 10−10 m2/s。铍微观结构的演化与退火温度有关。在473-773 K下退火5 h后,气孔率范围为1-2%,接收态与退火后无明显差异。在873 - 1373 K温度下退火5 h,形成大气泡,孔隙率在873 K以上急剧增加,达到30-60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
期刊最新文献
Estimation of Turbulent Mixing Factor and Study of Turbulent Flow Structures in PWR Sub Channel by DNS Effect of Radial Neutron Reflector on the Characteristics of Nuclear Fuel Burn-up Wave in a Fast Neutron Energy Spectrum Multiplying Medium: A Consistent Parametric Approach Reviewing Welding Procedures - Checklists for Nuclear Power Systems Performance of NB-CTMFD detector vs Ludlum 42-49B, and Fuji NSN3 detectors for hard (Am-Be) and soft (Cf-252 fission) energy spectra neutron sources within lead/concrete shielded configurations Performance of B-CTMFD Detector Vs Ludlum 42-49B, Fuji NSN3 Detectors for Fission Energy Spectrum Neutron Detection with the Source within Lead/concrete Shielded Configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1